Anmelden (DTAQ) DWDS     dlexDB     CLARIN-D

Schröder, Ernst: Vorlesungen über die Algebra der Logik. Bd. 1. Leipzig, 1890.

Bild:
<< vorherige Seite
Zur Gruppentheorie des identischen Kalkuls.

Die Gruppe G (a, b, c) besteht hienach aus folgenden 256 Elementen:
1. Typus: 0; 22. Typus: 1;


2. Typus:
a b c, a b c1, a b1 c, a b1 c1, a1 b c, a1 b c1, a1 b1 c, a1 b1 c1.
21. Typus:
a1 + b1 + c1, a1 + b1 + c, a1 + b + c1, a1 + b + c, a + b1 + c1, a + b1 + c, a + b + c1, a + b + c.

3. Typus:
a b, a b1, a1 b, a1 b1, a c, a c1, a1 c, a1 c1, b c, b c1, b1 c, b1 c1.
20. Typus:
a1 + b1, a1 + b, a + b1, a + b, a1 + c1, a1 + c, a + c1, a + c, b1 + c1, b1 + c, b + c1, b + c.
4. Typus:
a (b c + b1 c1), a (b c1 + b1 c), a1 (b c + b1 c1), a1 (b c1 + b1 c),
b (a c + a1 c1), b (a c1 + a1 c), b1 (a c + a1 c1), b1 (a c1 + a1 c),
(a b + a1 b1) c, (a b1 + a1 b) c, (a b + a1 b1) c1, (a b1 + a1 b) c1.

19. Typus:
a1 + b c1 + b1 c, a1 + b c + b1 c1, a + b c1 + b1 c, a + b c + b1 c1,
b1 + a c1 + a1 c, b1 + a c + a1 c1, b + a c1 + a1 c, b + a c + a1 c1,
a b1 + a1 b + c1, a b + a1 b1 + c1, a b1 + a1 b + c, a b + a1 b1 + c.

5. Typus:
a b c + a1 b1 c1, a b c1 + a1 b1 c, a b1 c + a1 b c1, a b1 c1 + a1 b c.
18. Typus:
(a + b + c) (a1 + b1 + c1), (a + b + c1) (a1 + b1 + c), (a + b1 + c) (a1 + b + c1), (a + b1 + c1) (a1 + b + c)
oder:
oder:
a b1 + b c1 + c a1,
a c1 + c b1 + b a1,
a b1 + a1 c1 + b c,
a c + a1 b + b1 c1,
a b + a1 c + b1 c1,
a c1 + a1 b1 + b c,
a c + a1 b1 + b c1
a b + a1 c1 + b1 c.


6. Typus:
a (b + c), a (b + c1), a (b1 + c1), a (b1 + c), a1 (b + c), a1 (b1 + c), a1 (b1 + c1), a1 (b + c1),
b (a + c), b (a1 + c), b (a1 + c1), b (a + c1), b1 (a + c), b1 (a + c1), b1 (a1 + c1), b1 (a1 + c),
(a + b) c, (a + b1) c, (a1 + b1) c, (a1 + b) c, (a + b) c1, (a1 + b) c1, (a1 + b1) c1, (a + b1) c1.
17. Typus:
a1 + b1 c1, a1 + b1 c, a1 + b c, a1 + b c1, a + b1 c1, a + b c1, a + b c, a + b1 c,
b1 + a1 c1, b1 + a c1, b1 + a c, b1 + a1 c, b + a1 c1, b + a1 c, b + a c, b + a c1,
a1 b1 + c1, a1 b + c1, a b + c1, a b1 + c1, a1 b1 + c, a b1 + c, a b + c, a1 b + c.

Schröder, Algebra der Logik. 43
Zur Gruppentheorie des identischen Kalkuls.

Die Gruppe G (a, b, c) besteht hienach aus folgenden 256 Elementen:
1. Typus: 0; 22. Typus: 1;


2. Typus:
a b c, a b c1, a b1 c, a b1 c1, a1 b c, a1 b c1, a1 b1 c, a1 b1 c1.
21. Typus:
a1 + b1 + c1, a1 + b1 + c, a1 + b + c1, a1 + b + c, a + b1 + c1, a + b1 + c, a + b + c1, a + b + c.

3. Typus:
a b, a b1, a1 b, a1 b1, a c, a c1, a1 c, a1 c1, b c, b c1, b1 c, b1 c1.
20. Typus:
a1 + b1, a1 + b, a + b1, a + b, a1 + c1, a1 + c, a + c1, a + c, b1 + c1, b1 + c, b + c1, b + c.
4. Typus:
a (b c + b1 c1), a (b c1 + b1 c), a1 (b c + b1 c1), a1 (b c1 + b1 c),
b (a c + a1 c1), b (a c1 + a1 c), b1 (a c + a1 c1), b1 (a c1 + a1 c),
(a b + a1 b1) c, (a b1 + a1 b) c, (a b + a1 b1) c1, (a b1 + a1 b) c1.

19. Typus:
a1 + b c1 + b1 c, a1 + b c + b1 c1, a + b c1 + b1 c, a + b c + b1 c1,
b1 + a c1 + a1 c, b1 + a c + a1 c1, b + a c1 + a1 c, b + a c + a1 c1,
a b1 + a1 b + c1, a b + a1 b1 + c1, a b1 + a1 b + c, a b + a1 b1 + c.

5. Typus:
a b c + a1 b1 c1, a b c1 + a1 b1 c, a b1 c + a1 b c1, a b1 c1 + a1 b c.
18. Typus:
(a + b + c) (a1 + b1 + c1), (a + b + c1) (a1 + b1 + c), (a + b1 + c) (a1 + b + c1), (a + b1 + c1) (a1 + b + c)
oder:
oder:
a b1 + b c1 + c a1,
a c1 + c b1 + b a1,
a b1 + a1 c1 + b c,
a c + a1 b + b1 c1,
a b + a1 c + b1 c1,
a c1 + a1 b1 + b c,
a c + a1 b1 + b c1
a b + a1 c1 + b1 c.


6. Typus:
a (b + c), a (b + c1), a (b1 + c1), a (b1 + c), a1 (b + c), a1 (b1 + c), a1 (b1 + c1), a1 (b + c1),
b (a + c), b (a1 + c), b (a1 + c1), b (a + c1), b1 (a + c), b1 (a + c1), b1 (a1 + c1), b1 (a1 + c),
(a + b) c, (a + b1) c, (a1 + b1) c, (a1 + b) c, (a + b) c1, (a1 + b) c1, (a1 + b1) c1, (a + b1) c1.
17. Typus:
a1 + b1 c1, a1 + b1 c, a1 + b c, a1 + b c1, a + b1 c1, a + b c1, a + b c, a + b1 c,
b1 + a1 c1, b1 + a c1, b1 + a c, b1 + a1 c, b + a1 c1, b + a1 c, b + a c, b + a c1,
a1 b1 + c1, a1 b + c1, a b + c1, a b1 + c1, a1 b1 + c, a b1 + c, a b + c, a1 b + c.

Schröder, Algebra der Logik. 43
<TEI>
  <text>
    <body>
      <div n="1">
        <div n="2">
          <pb facs="#f0693" n="673"/>
          <fw place="top" type="header">Zur Gruppentheorie des identischen Kalkuls.</fw><lb/>
          <p>Die Gruppe <hi rendition="#i">G</hi> (<hi rendition="#i">a</hi>, <hi rendition="#i">b</hi>, <hi rendition="#i">c</hi>) besteht hienach aus folgenden 256 Elementen:<lb/>
1. Typus: 0; <hi rendition="#et">22. Typus: 1;</hi><lb/><milestone rendition="#hr" unit="section"/> 2. Typus:<lb/><hi rendition="#c"><hi rendition="#i">a b c</hi>, <hi rendition="#i">a b c</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">a b</hi><hi rendition="#sub">1</hi><hi rendition="#i">c</hi>, <hi rendition="#i">a b</hi><hi rendition="#sub">1</hi><hi rendition="#i">c</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">a</hi><hi rendition="#sub">1</hi><hi rendition="#i">b c</hi>, <hi rendition="#i">a</hi><hi rendition="#sub">1</hi><hi rendition="#i">b c</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">a</hi><hi rendition="#sub">1</hi><hi rendition="#i">b</hi><hi rendition="#sub">1</hi><hi rendition="#i">c</hi>, <hi rendition="#i">a</hi><hi rendition="#sub">1</hi><hi rendition="#i">b</hi><hi rendition="#sub">1</hi><hi rendition="#i">c</hi><hi rendition="#sub">1</hi>.</hi><lb/>
21. Typus:<lb/><hi rendition="#i">a</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">c</hi>, <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">b</hi> + <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">b</hi> + <hi rendition="#i">c</hi>, <hi rendition="#i">a</hi> + <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">a</hi> + <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">c</hi>, <hi rendition="#i">a</hi> + <hi rendition="#i">b</hi> + <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">a</hi> + <hi rendition="#i">b</hi> + <hi rendition="#i">c</hi>.<lb/><milestone rendition="#hr" unit="section"/> 3. Typus:<lb/><hi rendition="#c"><hi rendition="#i">a b</hi>, <hi rendition="#i">a b</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">a</hi><hi rendition="#sub">1</hi><hi rendition="#i">b</hi>, <hi rendition="#i">a</hi><hi rendition="#sub">1</hi><hi rendition="#i">b</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">a c</hi>, <hi rendition="#i">a c</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">a</hi><hi rendition="#sub">1</hi><hi rendition="#i">c</hi>, <hi rendition="#i">a</hi><hi rendition="#sub">1</hi><hi rendition="#i">c</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">b c</hi>, <hi rendition="#i">b c</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">b</hi><hi rendition="#sub">1</hi><hi rendition="#i">c</hi>, <hi rendition="#i">b</hi><hi rendition="#sub">1</hi><hi rendition="#i">c</hi><hi rendition="#sub">1</hi>.</hi><lb/>
20. Typus:<lb/><hi rendition="#i">a</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">b</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">b</hi>, <hi rendition="#i">a</hi> + <hi rendition="#i">b</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">a</hi> + <hi rendition="#i">b</hi>, <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">c</hi>, <hi rendition="#i">a</hi> + <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">a</hi> + <hi rendition="#i">c</hi>, <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">c</hi>, <hi rendition="#i">b</hi> + <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">b</hi> + <hi rendition="#i">c</hi>.<lb/>
4. Typus:<lb/><hi rendition="#c"><hi rendition="#i">a</hi> (<hi rendition="#i">b c</hi> + <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>), <hi rendition="#i">a</hi> (<hi rendition="#i">b c</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> <hi rendition="#i">c</hi>), <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> (<hi rendition="#i">b c</hi> + <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>), <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> (<hi rendition="#i">b c</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> <hi rendition="#i">c</hi>),<lb/><hi rendition="#i">b</hi> (<hi rendition="#i">a c</hi> + <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>), <hi rendition="#i">b</hi> (<hi rendition="#i">a c</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> <hi rendition="#i">c</hi>), <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> (<hi rendition="#i">a c</hi> + <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>), <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> (<hi rendition="#i">a c</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> <hi rendition="#i">c</hi>),<lb/>
(<hi rendition="#i">a b</hi> + <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> <hi rendition="#i">b</hi><hi rendition="#sub">1</hi>) <hi rendition="#i">c</hi>, (<hi rendition="#i">a b</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> <hi rendition="#i">b</hi>) <hi rendition="#i">c</hi>, (<hi rendition="#i">a b</hi> + <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> <hi rendition="#i">b</hi><hi rendition="#sub">1</hi>) <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>, (<hi rendition="#i">a b</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> <hi rendition="#i">b</hi>) <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>.</hi><lb/>
19. Typus:<lb/><hi rendition="#c"><hi rendition="#i">a</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">b c</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> <hi rendition="#i">c</hi>, <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">b c</hi> + <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">a</hi> + <hi rendition="#i">b c</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> <hi rendition="#i">c</hi>, <hi rendition="#i">a</hi> + <hi rendition="#i">b c</hi> + <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>,<lb/><hi rendition="#i">b</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">a c</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> <hi rendition="#i">c</hi>, <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">a c</hi> + <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">b</hi> + <hi rendition="#i">a c</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> <hi rendition="#i">c</hi>, <hi rendition="#i">b</hi> + <hi rendition="#i">a c</hi> + <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>,<lb/><hi rendition="#i">a b</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> <hi rendition="#i">b</hi> + <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">a b</hi> + <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">a b</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> <hi rendition="#i">b</hi> + <hi rendition="#i">c</hi>, <hi rendition="#i">a b</hi> + <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">c</hi>.</hi><lb/>
5. Typus:<lb/><hi rendition="#c"><hi rendition="#i">a b c</hi> + <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">a b c</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> <hi rendition="#i">c</hi>, <hi rendition="#i">a b</hi><hi rendition="#sub">1</hi> <hi rendition="#i">c</hi> + <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> <hi rendition="#i">b c</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">a b</hi><hi rendition="#sub">1</hi> <hi rendition="#i">c</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> <hi rendition="#i">b c</hi>.</hi><lb/>
18. Typus:<lb/>
(<hi rendition="#i">a</hi> + <hi rendition="#i">b</hi> + <hi rendition="#i">c</hi>) (<hi rendition="#i">a</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>), (<hi rendition="#i">a</hi> + <hi rendition="#i">b</hi> + <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>) (<hi rendition="#i">a</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">c</hi>), (<hi rendition="#i">a</hi> + <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">c</hi>) (<hi rendition="#i">a</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">b</hi> + <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>), (<hi rendition="#i">a</hi> + <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>) (<hi rendition="#i">a</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">b</hi> + <hi rendition="#i">c</hi>)<lb/><table><row><cell><list><item><list rendition="#leftBraced"><item>oder: </item><lb/><item>oder: </item></list></item></list></cell><cell><list><item><hi rendition="#i">a b</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">b c</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">c a</hi><hi rendition="#sub">1</hi>,</item><lb/><item><hi rendition="#i">a c</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">c b</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">b a</hi><hi rendition="#sub">1</hi>,</item></list></cell><cell><list><item><hi rendition="#i">a b</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> <hi rendition="#i">c</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">b c</hi>,</item><lb/><item><hi rendition="#i">a c</hi> + <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> <hi rendition="#i">b</hi> + <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>,</item></list></cell><cell><list><item><hi rendition="#i">a b</hi> + <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> <hi rendition="#i">c</hi> + <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>,</item><lb/><item><hi rendition="#i">a c</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">b c</hi>,</item></list></cell><cell><list><item><list rendition="#rightBraced"><item><hi rendition="#i">a c</hi> + <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">b c</hi><hi rendition="#sub">1</hi></item><lb/><item><hi rendition="#i">a b</hi> + <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> <hi rendition="#i">c</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> <hi rendition="#i">c</hi>.</item></list></item></list></cell></row></table><lb/><milestone rendition="#hr" unit="section"/> 6. Typus:<lb/><hi rendition="#i">a</hi> (<hi rendition="#i">b</hi> + <hi rendition="#i">c</hi>), <hi rendition="#i">a</hi> (<hi rendition="#i">b</hi> + <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>), <hi rendition="#i">a</hi> (<hi rendition="#i">b</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>), <hi rendition="#i">a</hi> (<hi rendition="#i">b</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">c</hi>), <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> (<hi rendition="#i">b</hi> + <hi rendition="#i">c</hi>), <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> (<hi rendition="#i">b</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">c</hi>), <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> (<hi rendition="#i">b</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>), <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> (<hi rendition="#i">b</hi> + <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>),<lb/><hi rendition="#i">b</hi> (<hi rendition="#i">a</hi> + <hi rendition="#i">c</hi>), <hi rendition="#i">b</hi> (<hi rendition="#i">a</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">c</hi>), <hi rendition="#i">b</hi> (<hi rendition="#i">a</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>), <hi rendition="#i">b</hi> (<hi rendition="#i">a</hi> + <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>), <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> (<hi rendition="#i">a</hi> + <hi rendition="#i">c</hi>), <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> (<hi rendition="#i">a</hi> + <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>), <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> (<hi rendition="#i">a</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>), <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> (<hi rendition="#i">a</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">c</hi>),<lb/>
(<hi rendition="#i">a</hi> + <hi rendition="#i">b</hi>) <hi rendition="#i">c</hi>, (<hi rendition="#i">a</hi> + <hi rendition="#i">b</hi><hi rendition="#sub">1</hi>) <hi rendition="#i">c</hi>, (<hi rendition="#i">a</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">b</hi><hi rendition="#sub">1</hi>) <hi rendition="#i">c</hi>, (<hi rendition="#i">a</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">b</hi>) <hi rendition="#i">c</hi>, (<hi rendition="#i">a</hi> + <hi rendition="#i">b</hi>) <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>, (<hi rendition="#i">a</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">b</hi>) <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>, (<hi rendition="#i">a</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">b</hi><hi rendition="#sub">1</hi>) <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>, (<hi rendition="#i">a</hi> + <hi rendition="#i">b</hi><hi rendition="#sub">1</hi>) <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>.<lb/>
17. Typus:<lb/><hi rendition="#i">a</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> <hi rendition="#i">c</hi>, <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">b c</hi>, <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">b c</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">a</hi> + <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">a</hi> + <hi rendition="#i">b c</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">a</hi> + <hi rendition="#i">b c</hi>, <hi rendition="#i">a</hi> + <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> <hi rendition="#i">c</hi>,<lb/><hi rendition="#i">b</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">a c</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">a c</hi>, <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> <hi rendition="#i">c</hi>, <hi rendition="#i">b</hi> + <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">b</hi> + <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> <hi rendition="#i">c</hi>, <hi rendition="#i">b</hi> + <hi rendition="#i">a c</hi>, <hi rendition="#i">b</hi> + <hi rendition="#i">a c</hi><hi rendition="#sub">1</hi>,<lb/><hi rendition="#i">a</hi><hi rendition="#sub">1</hi> <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> <hi rendition="#i">b</hi> + <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">a b</hi> + <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">a b</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">c</hi>, <hi rendition="#i">a b</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">c</hi>, <hi rendition="#i">a b</hi> + <hi rendition="#i">c</hi>, <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> <hi rendition="#i">b</hi> + <hi rendition="#i">c</hi>.<lb/>
<fw place="bottom" type="sig"><hi rendition="#k">Schröder</hi>, Algebra der Logik. 43</fw><lb/></p>
        </div>
      </div>
    </body>
  </text>
</TEI>
[673/0693] Zur Gruppentheorie des identischen Kalkuls. Die Gruppe G (a, b, c) besteht hienach aus folgenden 256 Elementen: 1. Typus: 0; 22. Typus: 1; 2. Typus: a b c, a b c1, a b1 c, a b1 c1, a1 b c, a1 b c1, a1 b1 c, a1 b1 c1. 21. Typus: a1 + b1 + c1, a1 + b1 + c, a1 + b + c1, a1 + b + c, a + b1 + c1, a + b1 + c, a + b + c1, a + b + c. 3. Typus: a b, a b1, a1 b, a1 b1, a c, a c1, a1 c, a1 c1, b c, b c1, b1 c, b1 c1. 20. Typus: a1 + b1, a1 + b, a + b1, a + b, a1 + c1, a1 + c, a + c1, a + c, b1 + c1, b1 + c, b + c1, b + c. 4. Typus: a (b c + b1 c1), a (b c1 + b1 c), a1 (b c + b1 c1), a1 (b c1 + b1 c), b (a c + a1 c1), b (a c1 + a1 c), b1 (a c + a1 c1), b1 (a c1 + a1 c), (a b + a1 b1) c, (a b1 + a1 b) c, (a b + a1 b1) c1, (a b1 + a1 b) c1. 19. Typus: a1 + b c1 + b1 c, a1 + b c + b1 c1, a + b c1 + b1 c, a + b c + b1 c1, b1 + a c1 + a1 c, b1 + a c + a1 c1, b + a c1 + a1 c, b + a c + a1 c1, a b1 + a1 b + c1, a b + a1 b1 + c1, a b1 + a1 b + c, a b + a1 b1 + c. 5. Typus: a b c + a1 b1 c1, a b c1 + a1 b1 c, a b1 c + a1 b c1, a b1 c1 + a1 b c. 18. Typus: (a + b + c) (a1 + b1 + c1), (a + b + c1) (a1 + b1 + c), (a + b1 + c) (a1 + b + c1), (a + b1 + c1) (a1 + b + c) oder: oder: a b1 + b c1 + c a1, a c1 + c b1 + b a1, a b1 + a1 c1 + b c, a c + a1 b + b1 c1, a b + a1 c + b1 c1, a c1 + a1 b1 + b c, a c + a1 b1 + b c1 a b + a1 c1 + b1 c. 6. Typus: a (b + c), a (b + c1), a (b1 + c1), a (b1 + c), a1 (b + c), a1 (b1 + c), a1 (b1 + c1), a1 (b + c1), b (a + c), b (a1 + c), b (a1 + c1), b (a + c1), b1 (a + c), b1 (a + c1), b1 (a1 + c1), b1 (a1 + c), (a + b) c, (a + b1) c, (a1 + b1) c, (a1 + b) c, (a + b) c1, (a1 + b) c1, (a1 + b1) c1, (a + b1) c1. 17. Typus: a1 + b1 c1, a1 + b1 c, a1 + b c, a1 + b c1, a + b1 c1, a + b c1, a + b c, a + b1 c, b1 + a1 c1, b1 + a c1, b1 + a c, b1 + a1 c, b + a1 c1, b + a1 c, b + a c, b + a c1, a1 b1 + c1, a1 b + c1, a b + c1, a b1 + c1, a1 b1 + c, a b1 + c, a b + c, a1 b + c. Schröder, Algebra der Logik. 43

Suche im Werk

Hilfe

Informationen zum Werk

Download dieses Werks

XML (TEI P5) · HTML · Text
TCF (text annotation layer)
XML (TEI P5 inkl. att.linguistic)

Metadaten zum Werk

TEI-Header · CMDI · Dublin Core

Ansichten dieser Seite

Voyant Tools ?

Language Resource Switchboard?

Feedback

Sie haben einen Fehler gefunden? Dann können Sie diesen über unsere Qualitätssicherungsplattform DTAQ melden.

Kommentar zur DTA-Ausgabe

Dieses Werk wurde gemäß den DTA-Transkriptionsrichtlinien im Double-Keying-Verfahren von Nicht-Muttersprachlern erfasst und in XML/TEI P5 nach DTA-Basisformat kodiert.




Ansicht auf Standard zurückstellen

URL zu diesem Werk: https://www.deutschestextarchiv.de/schroeder_logik01_1890
URL zu dieser Seite: https://www.deutschestextarchiv.de/schroeder_logik01_1890/693
Zitationshilfe: Schröder, Ernst: Vorlesungen über die Algebra der Logik. Bd. 1. Leipzig, 1890, S. 673. In: Deutsches Textarchiv <https://www.deutschestextarchiv.de/schroeder_logik01_1890/693>, abgerufen am 23.11.2024.