Schröder, Ernst: Vorlesungen über die Algebra der Logik. Bd. 1. Leipzig, 1890.Zur Gruppentheorie des identischen Kalkuls. Die Gruppe G (a, b, c) besteht hienach aus folgenden 256 Elementen: 2. Typus: a b c, a b c1, a b1 c, a b1 c1, a1 b c, a1 b c1, a1 b1 c, a1 b1 c1. 21. Typus: a1 + b1 + c1, a1 + b1 + c, a1 + b + c1, a1 + b + c, a + b1 + c1, a + b1 + c, a + b + c1, a + b + c. 3. Typus: a b, a b1, a1 b, a1 b1, a c, a c1, a1 c, a1 c1, b c, b c1, b1 c, b1 c1. 20. Typus: a1 + b1, a1 + b, a + b1, a + b, a1 + c1, a1 + c, a + c1, a + c, b1 + c1, b1 + c, b + c1, b + c. 4. Typus: a (b c + b1 c1), a (b c1 + b1 c), a1 (b c + b1 c1), a1 (b c1 + b1 c), b (a c + a1 c1), b (a c1 + a1 c), b1 (a c + a1 c1), b1 (a c1 + a1 c), (a b + a1 b1) c, (a b1 + a1 b) c, (a b + a1 b1) c1, (a b1 + a1 b) c1. 19. Typus: a1 + b c1 + b1 c, a1 + b c + b1 c1, a + b c1 + b1 c, a + b c + b1 c1, b1 + a c1 + a1 c, b1 + a c + a1 c1, b + a c1 + a1 c, b + a c + a1 c1, a b1 + a1 b + c1, a b + a1 b1 + c1, a b1 + a1 b + c, a b + a1 b1 + c. 5. Typus: a b c + a1 b1 c1, a b c1 + a1 b1 c, a b1 c + a1 b c1, a b1 c1 + a1 b c. 18. Typus: (a + b + c) (a1 + b1 + c1), (a + b + c1) (a1 + b1 + c), (a + b1 + c) (a1 + b + c1), (a + b1 + c1) (a1 + b + c)
6. Typus: a (b + c), a (b + c1), a (b1 + c1), a (b1 + c), a1 (b + c), a1 (b1 + c), a1 (b1 + c1), a1 (b + c1), b (a + c), b (a1 + c), b (a1 + c1), b (a + c1), b1 (a + c), b1 (a + c1), b1 (a1 + c1), b1 (a1 + c), (a + b) c, (a + b1) c, (a1 + b1) c, (a1 + b) c, (a + b) c1, (a1 + b) c1, (a1 + b1) c1, (a + b1) c1. 17. Typus: a1 + b1 c1, a1 + b1 c, a1 + b c, a1 + b c1, a + b1 c1, a + b c1, a + b c, a + b1 c, b1 + a1 c1, b1 + a c1, b1 + a c, b1 + a1 c, b + a1 c1, b + a1 c, b + a c, b + a c1, a1 b1 + c1, a1 b + c1, a b + c1, a b1 + c1, a1 b1 + c, a b1 + c, a b + c, a1 b + c. Schröder, Algebra der Logik. 43
Zur Gruppentheorie des identischen Kalkuls. Die Gruppe G (a, b, c) besteht hienach aus folgenden 256 Elementen: 2. Typus: a b c, a b c1, a b1 c, a b1 c1, a1 b c, a1 b c1, a1 b1 c, a1 b1 c1. 21. Typus: a1 + b1 + c1, a1 + b1 + c, a1 + b + c1, a1 + b + c, a + b1 + c1, a + b1 + c, a + b + c1, a + b + c. 3. Typus: a b, a b1, a1 b, a1 b1, a c, a c1, a1 c, a1 c1, b c, b c1, b1 c, b1 c1. 20. Typus: a1 + b1, a1 + b, a + b1, a + b, a1 + c1, a1 + c, a + c1, a + c, b1 + c1, b1 + c, b + c1, b + c. 4. Typus: a (b c + b1 c1), a (b c1 + b1 c), a1 (b c + b1 c1), a1 (b c1 + b1 c), b (a c + a1 c1), b (a c1 + a1 c), b1 (a c + a1 c1), b1 (a c1 + a1 c), (a b + a1 b1) c, (a b1 + a1 b) c, (a b + a1 b1) c1, (a b1 + a1 b) c1. 19. Typus: a1 + b c1 + b1 c, a1 + b c + b1 c1, a + b c1 + b1 c, a + b c + b1 c1, b1 + a c1 + a1 c, b1 + a c + a1 c1, b + a c1 + a1 c, b + a c + a1 c1, a b1 + a1 b + c1, a b + a1 b1 + c1, a b1 + a1 b + c, a b + a1 b1 + c. 5. Typus: a b c + a1 b1 c1, a b c1 + a1 b1 c, a b1 c + a1 b c1, a b1 c1 + a1 b c. 18. Typus: (a + b + c) (a1 + b1 + c1), (a + b + c1) (a1 + b1 + c), (a + b1 + c) (a1 + b + c1), (a + b1 + c1) (a1 + b + c)
6. Typus: a (b + c), a (b + c1), a (b1 + c1), a (b1 + c), a1 (b + c), a1 (b1 + c), a1 (b1 + c1), a1 (b + c1), b (a + c), b (a1 + c), b (a1 + c1), b (a + c1), b1 (a + c), b1 (a + c1), b1 (a1 + c1), b1 (a1 + c), (a + b) c, (a + b1) c, (a1 + b1) c, (a1 + b) c, (a + b) c1, (a1 + b) c1, (a1 + b1) c1, (a + b1) c1. 17. Typus: a1 + b1 c1, a1 + b1 c, a1 + b c, a1 + b c1, a + b1 c1, a + b c1, a + b c, a + b1 c, b1 + a1 c1, b1 + a c1, b1 + a c, b1 + a1 c, b + a1 c1, b + a1 c, b + a c, b + a c1, a1 b1 + c1, a1 b + c1, a b + c1, a b1 + c1, a1 b1 + c, a b1 + c, a b + c, a1 b + c. Schröder, Algebra der Logik. 43
<TEI> <text> <body> <div n="1"> <div n="2"> <pb facs="#f0693" n="673"/> <fw place="top" type="header">Zur Gruppentheorie des identischen Kalkuls.</fw><lb/> <p>Die Gruppe <hi rendition="#i">G</hi> (<hi rendition="#i">a</hi>, <hi rendition="#i">b</hi>, <hi rendition="#i">c</hi>) besteht hienach aus folgenden 256 Elementen:<lb/> 1. Typus: 0; <hi rendition="#et">22. Typus: 1;</hi><lb/><milestone rendition="#hr" unit="section"/> 2. Typus:<lb/><hi rendition="#c"><hi rendition="#i">a b c</hi>, <hi rendition="#i">a b c</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">a b</hi><hi rendition="#sub">1</hi><hi rendition="#i">c</hi>, <hi rendition="#i">a b</hi><hi rendition="#sub">1</hi><hi rendition="#i">c</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">a</hi><hi rendition="#sub">1</hi><hi rendition="#i">b c</hi>, <hi rendition="#i">a</hi><hi rendition="#sub">1</hi><hi rendition="#i">b c</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">a</hi><hi rendition="#sub">1</hi><hi rendition="#i">b</hi><hi rendition="#sub">1</hi><hi rendition="#i">c</hi>, <hi rendition="#i">a</hi><hi rendition="#sub">1</hi><hi rendition="#i">b</hi><hi rendition="#sub">1</hi><hi rendition="#i">c</hi><hi rendition="#sub">1</hi>.</hi><lb/> 21. Typus:<lb/><hi rendition="#i">a</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">c</hi>, <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">b</hi> + <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">b</hi> + <hi rendition="#i">c</hi>, <hi rendition="#i">a</hi> + <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">a</hi> + <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">c</hi>, <hi rendition="#i">a</hi> + <hi rendition="#i">b</hi> + <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">a</hi> + <hi rendition="#i">b</hi> + <hi rendition="#i">c</hi>.<lb/><milestone rendition="#hr" unit="section"/> 3. Typus:<lb/><hi rendition="#c"><hi rendition="#i">a b</hi>, <hi rendition="#i">a b</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">a</hi><hi rendition="#sub">1</hi><hi rendition="#i">b</hi>, <hi rendition="#i">a</hi><hi rendition="#sub">1</hi><hi rendition="#i">b</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">a c</hi>, <hi rendition="#i">a c</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">a</hi><hi rendition="#sub">1</hi><hi rendition="#i">c</hi>, <hi rendition="#i">a</hi><hi rendition="#sub">1</hi><hi rendition="#i">c</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">b c</hi>, <hi rendition="#i">b c</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">b</hi><hi rendition="#sub">1</hi><hi rendition="#i">c</hi>, <hi rendition="#i">b</hi><hi rendition="#sub">1</hi><hi rendition="#i">c</hi><hi rendition="#sub">1</hi>.</hi><lb/> 20. Typus:<lb/><hi rendition="#i">a</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">b</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">b</hi>, <hi rendition="#i">a</hi> + <hi rendition="#i">b</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">a</hi> + <hi rendition="#i">b</hi>, <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">c</hi>, <hi rendition="#i">a</hi> + <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">a</hi> + <hi rendition="#i">c</hi>, <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">c</hi>, <hi rendition="#i">b</hi> + <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">b</hi> + <hi rendition="#i">c</hi>.<lb/> 4. Typus:<lb/><hi rendition="#c"><hi rendition="#i">a</hi> (<hi rendition="#i">b c</hi> + <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>), <hi rendition="#i">a</hi> (<hi rendition="#i">b c</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> <hi rendition="#i">c</hi>), <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> (<hi rendition="#i">b c</hi> + <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>), <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> (<hi rendition="#i">b c</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> <hi rendition="#i">c</hi>),<lb/><hi rendition="#i">b</hi> (<hi rendition="#i">a c</hi> + <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>), <hi rendition="#i">b</hi> (<hi rendition="#i">a c</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> <hi rendition="#i">c</hi>), <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> (<hi rendition="#i">a c</hi> + <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>), <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> (<hi rendition="#i">a c</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> <hi rendition="#i">c</hi>),<lb/> (<hi rendition="#i">a b</hi> + <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> <hi rendition="#i">b</hi><hi rendition="#sub">1</hi>) <hi rendition="#i">c</hi>, (<hi rendition="#i">a b</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> <hi rendition="#i">b</hi>) <hi rendition="#i">c</hi>, (<hi rendition="#i">a b</hi> + <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> <hi rendition="#i">b</hi><hi rendition="#sub">1</hi>) <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>, (<hi rendition="#i">a b</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> <hi rendition="#i">b</hi>) <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>.</hi><lb/> 19. Typus:<lb/><hi rendition="#c"><hi rendition="#i">a</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">b c</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> <hi rendition="#i">c</hi>, <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">b c</hi> + <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">a</hi> + <hi rendition="#i">b c</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> <hi rendition="#i">c</hi>, <hi rendition="#i">a</hi> + <hi rendition="#i">b c</hi> + <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>,<lb/><hi rendition="#i">b</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">a c</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> <hi rendition="#i">c</hi>, <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">a c</hi> + <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">b</hi> + <hi rendition="#i">a c</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> <hi rendition="#i">c</hi>, <hi rendition="#i">b</hi> + <hi rendition="#i">a c</hi> + <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>,<lb/><hi rendition="#i">a b</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> <hi rendition="#i">b</hi> + <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">a b</hi> + <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">a b</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> <hi rendition="#i">b</hi> + <hi rendition="#i">c</hi>, <hi rendition="#i">a b</hi> + <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">c</hi>.</hi><lb/> 5. Typus:<lb/><hi rendition="#c"><hi rendition="#i">a b c</hi> + <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">a b c</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> <hi rendition="#i">c</hi>, <hi rendition="#i">a b</hi><hi rendition="#sub">1</hi> <hi rendition="#i">c</hi> + <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> <hi rendition="#i">b c</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">a b</hi><hi rendition="#sub">1</hi> <hi rendition="#i">c</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> <hi rendition="#i">b c</hi>.</hi><lb/> 18. Typus:<lb/> (<hi rendition="#i">a</hi> + <hi rendition="#i">b</hi> + <hi rendition="#i">c</hi>) (<hi rendition="#i">a</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>), (<hi rendition="#i">a</hi> + <hi rendition="#i">b</hi> + <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>) (<hi rendition="#i">a</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">c</hi>), (<hi rendition="#i">a</hi> + <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">c</hi>) (<hi rendition="#i">a</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">b</hi> + <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>), (<hi rendition="#i">a</hi> + <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>) (<hi rendition="#i">a</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">b</hi> + <hi rendition="#i">c</hi>)<lb/><table><row><cell><list><item><list rendition="#leftBraced"><item>oder: </item><lb/><item>oder: </item></list></item></list></cell><cell><list><item><hi rendition="#i">a b</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">b c</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">c a</hi><hi rendition="#sub">1</hi>,</item><lb/><item><hi rendition="#i">a c</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">c b</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">b a</hi><hi rendition="#sub">1</hi>,</item></list></cell><cell><list><item><hi rendition="#i">a b</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> <hi rendition="#i">c</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">b c</hi>,</item><lb/><item><hi rendition="#i">a c</hi> + <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> <hi rendition="#i">b</hi> + <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>,</item></list></cell><cell><list><item><hi rendition="#i">a b</hi> + <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> <hi rendition="#i">c</hi> + <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>,</item><lb/><item><hi rendition="#i">a c</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">b c</hi>,</item></list></cell><cell><list><item><list rendition="#rightBraced"><item><hi rendition="#i">a c</hi> + <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">b c</hi><hi rendition="#sub">1</hi></item><lb/><item><hi rendition="#i">a b</hi> + <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> <hi rendition="#i">c</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> <hi rendition="#i">c</hi>.</item></list></item></list></cell></row></table><lb/><milestone rendition="#hr" unit="section"/> 6. Typus:<lb/><hi rendition="#i">a</hi> (<hi rendition="#i">b</hi> + <hi rendition="#i">c</hi>), <hi rendition="#i">a</hi> (<hi rendition="#i">b</hi> + <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>), <hi rendition="#i">a</hi> (<hi rendition="#i">b</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>), <hi rendition="#i">a</hi> (<hi rendition="#i">b</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">c</hi>), <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> (<hi rendition="#i">b</hi> + <hi rendition="#i">c</hi>), <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> (<hi rendition="#i">b</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">c</hi>), <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> (<hi rendition="#i">b</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>), <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> (<hi rendition="#i">b</hi> + <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>),<lb/><hi rendition="#i">b</hi> (<hi rendition="#i">a</hi> + <hi rendition="#i">c</hi>), <hi rendition="#i">b</hi> (<hi rendition="#i">a</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">c</hi>), <hi rendition="#i">b</hi> (<hi rendition="#i">a</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>), <hi rendition="#i">b</hi> (<hi rendition="#i">a</hi> + <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>), <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> (<hi rendition="#i">a</hi> + <hi rendition="#i">c</hi>), <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> (<hi rendition="#i">a</hi> + <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>), <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> (<hi rendition="#i">a</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>), <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> (<hi rendition="#i">a</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">c</hi>),<lb/> (<hi rendition="#i">a</hi> + <hi rendition="#i">b</hi>) <hi rendition="#i">c</hi>, (<hi rendition="#i">a</hi> + <hi rendition="#i">b</hi><hi rendition="#sub">1</hi>) <hi rendition="#i">c</hi>, (<hi rendition="#i">a</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">b</hi><hi rendition="#sub">1</hi>) <hi rendition="#i">c</hi>, (<hi rendition="#i">a</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">b</hi>) <hi rendition="#i">c</hi>, (<hi rendition="#i">a</hi> + <hi rendition="#i">b</hi>) <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>, (<hi rendition="#i">a</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">b</hi>) <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>, (<hi rendition="#i">a</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">b</hi><hi rendition="#sub">1</hi>) <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>, (<hi rendition="#i">a</hi> + <hi rendition="#i">b</hi><hi rendition="#sub">1</hi>) <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>.<lb/> 17. Typus:<lb/><hi rendition="#i">a</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> <hi rendition="#i">c</hi>, <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">b c</hi>, <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">b c</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">a</hi> + <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">a</hi> + <hi rendition="#i">b c</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">a</hi> + <hi rendition="#i">b c</hi>, <hi rendition="#i">a</hi> + <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> <hi rendition="#i">c</hi>,<lb/><hi rendition="#i">b</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">a c</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">a c</hi>, <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> <hi rendition="#i">c</hi>, <hi rendition="#i">b</hi> + <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">b</hi> + <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> <hi rendition="#i">c</hi>, <hi rendition="#i">b</hi> + <hi rendition="#i">a c</hi>, <hi rendition="#i">b</hi> + <hi rendition="#i">a c</hi><hi rendition="#sub">1</hi>,<lb/><hi rendition="#i">a</hi><hi rendition="#sub">1</hi> <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> <hi rendition="#i">b</hi> + <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">a b</hi> + <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">a b</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">c</hi>, <hi rendition="#i">a b</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">c</hi>, <hi rendition="#i">a b</hi> + <hi rendition="#i">c</hi>, <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> <hi rendition="#i">b</hi> + <hi rendition="#i">c</hi>.<lb/> <fw place="bottom" type="sig"><hi rendition="#k">Schröder</hi>, Algebra der Logik. 43</fw><lb/></p> </div> </div> </body> </text> </TEI> [673/0693]
Zur Gruppentheorie des identischen Kalkuls.
Die Gruppe G (a, b, c) besteht hienach aus folgenden 256 Elementen:
1. Typus: 0; 22. Typus: 1;
2. Typus:
a b c, a b c1, a b1 c, a b1 c1, a1 b c, a1 b c1, a1 b1 c, a1 b1 c1.
21. Typus:
a1 + b1 + c1, a1 + b1 + c, a1 + b + c1, a1 + b + c, a + b1 + c1, a + b1 + c, a + b + c1, a + b + c.
3. Typus:
a b, a b1, a1 b, a1 b1, a c, a c1, a1 c, a1 c1, b c, b c1, b1 c, b1 c1.
20. Typus:
a1 + b1, a1 + b, a + b1, a + b, a1 + c1, a1 + c, a + c1, a + c, b1 + c1, b1 + c, b + c1, b + c.
4. Typus:
a (b c + b1 c1), a (b c1 + b1 c), a1 (b c + b1 c1), a1 (b c1 + b1 c),
b (a c + a1 c1), b (a c1 + a1 c), b1 (a c + a1 c1), b1 (a c1 + a1 c),
(a b + a1 b1) c, (a b1 + a1 b) c, (a b + a1 b1) c1, (a b1 + a1 b) c1.
19. Typus:
a1 + b c1 + b1 c, a1 + b c + b1 c1, a + b c1 + b1 c, a + b c + b1 c1,
b1 + a c1 + a1 c, b1 + a c + a1 c1, b + a c1 + a1 c, b + a c + a1 c1,
a b1 + a1 b + c1, a b + a1 b1 + c1, a b1 + a1 b + c, a b + a1 b1 + c.
5. Typus:
a b c + a1 b1 c1, a b c1 + a1 b1 c, a b1 c + a1 b c1, a b1 c1 + a1 b c.
18. Typus:
(a + b + c) (a1 + b1 + c1), (a + b + c1) (a1 + b1 + c), (a + b1 + c) (a1 + b + c1), (a + b1 + c1) (a1 + b + c)
oder:
oder:
a b1 + b c1 + c a1,
a c1 + c b1 + b a1,
a b1 + a1 c1 + b c,
a c + a1 b + b1 c1,
a b + a1 c + b1 c1,
a c1 + a1 b1 + b c,
a c + a1 b1 + b c1
a b + a1 c1 + b1 c.
6. Typus:
a (b + c), a (b + c1), a (b1 + c1), a (b1 + c), a1 (b + c), a1 (b1 + c), a1 (b1 + c1), a1 (b + c1),
b (a + c), b (a1 + c), b (a1 + c1), b (a + c1), b1 (a + c), b1 (a + c1), b1 (a1 + c1), b1 (a1 + c),
(a + b) c, (a + b1) c, (a1 + b1) c, (a1 + b) c, (a + b) c1, (a1 + b) c1, (a1 + b1) c1, (a + b1) c1.
17. Typus:
a1 + b1 c1, a1 + b1 c, a1 + b c, a1 + b c1, a + b1 c1, a + b c1, a + b c, a + b1 c,
b1 + a1 c1, b1 + a c1, b1 + a c, b1 + a1 c, b + a1 c1, b + a1 c, b + a c, b + a c1,
a1 b1 + c1, a1 b + c1, a b + c1, a b1 + c1, a1 b1 + c, a b1 + c, a b + c, a1 b + c.
Schröder, Algebra der Logik. 43
Suche im WerkInformationen zum Werk
Download dieses Werks
XML (TEI P5) ·
HTML ·
Text Metadaten zum WerkTEI-Header · CMDI · Dublin Core Ansichten dieser Seite
Voyant Tools ?Language Resource Switchboard?FeedbackSie haben einen Fehler gefunden? Dann können Sie diesen über unsere Qualitätssicherungsplattform DTAQ melden. Kommentar zur DTA-AusgabeDieses Werk wurde gemäß den DTA-Transkriptionsrichtlinien im Double-Keying-Verfahren von Nicht-Muttersprachlern erfasst und in XML/TEI P5 nach DTA-Basisformat kodiert.
|
Insbesondere im Hinblick auf die §§ 86a StGB und 130 StGB wird festgestellt, dass die auf diesen Seiten abgebildeten Inhalte weder in irgendeiner Form propagandistischen Zwecken dienen, oder Werbung für verbotene Organisationen oder Vereinigungen darstellen, oder nationalsozialistische Verbrechen leugnen oder verharmlosen, noch zum Zwecke der Herabwürdigung der Menschenwürde gezeigt werden. Die auf diesen Seiten abgebildeten Inhalte (in Wort und Bild) dienen im Sinne des § 86 StGB Abs. 3 ausschließlich historischen, sozial- oder kulturwissenschaftlichen Forschungszwecken. Ihre Veröffentlichung erfolgt in der Absicht, Wissen zur Anregung der intellektuellen Selbstständigkeit und Verantwortungsbereitschaft des Staatsbürgers zu vermitteln und damit der Förderung seiner Mündigkeit zu dienen.
2007–2024 Deutsches Textarchiv, Berlin-Brandenburgische Akademie der Wissenschaften.
Kontakt: redaktion(at)deutschestextarchiv.de. |