Anmelden (DTAQ) DWDS     dlexDB     CLARIN-D

Brandes, Heinrich Wilhelm: Vorlesungen über die Naturlehre. Bd. 1. Leipzig, 1830.

Bild:
<< vorherige Seite

die Quantität der Bewegung zu, wie einer Masse von 5 Pfunden,
die mit 6 Fuß Geschwindigkeit bewegt wird, oder wie einer Masse
von 1 Pfund, die mit 30 Fuß Geschwindigkeit in 1 Secunde fort-
geht, und die Producte 10.3 = 5.6 = 1.30. drücken die Quan-
tität der Bewegung aus.

Diese Ueberzeugung, daß beim Stoße an einander gleiche
Quantitäten der Bewegung sich völlig aufheben, wenn die Richtun-
gen der Bewegungen entgegengesetzt sind, führt zu dem zweiten
Satze, daß bei unelastischen Körpern, wo gar keine neuen Kräfte
thätig sind, nach dem Stoße die Summe der Bewegungen ebenso
groß ist als vor dem Stoße, wenn die Körper einander folgten, und
daß der Unterschied der beiden Bewegungsquantitäten vor dem Stoße
die Quantität der Bewegung nach dem Stoße giebt, wenn sie einan-
der begegnen. Beispiele werden dies völlig erläutern. Wenn zwei
Kugeln einander in genau entgegengesetzten Richtungen begegnen,
die eine von 4 Pfund, die andre von 1 Pfund, jene mit der Ge-
schwindigkeit = 9, diese mit der Geschwindigkeit = 6 Fuß in der
Secunde, so drückt 4. 9 = 36 bei jener 1. 6 = 6 bei dieser die
Quantität der Bewegung vor dem Stoße aus, und im Stoße behält
die erstere einen Ueberrest von 30; aber sie kann in ihrer Richtung
nicht fortgehen, ohne auch noch das eine Pfund mit fortzureißen, und
die Quantität der Bewegung = 30, auf die 5 vereinigten Pfunde
ausgetheilt, giebt diesen 6 Fuß Geschwindigkeit. Die Einwirkung
der mit größerer Bewegung begabten Masse ist also eine doppelte,
erstlich raubt sie der begegnenden Masse alle Geschwindigkeit, dazu
wäre sie bei 11/2 Fuß Geschwindigkeit schon im Stande gewesen, und
ihr bleiben daher 71/2 Fuß Geschwindigkeit übrig; aber zweitens er-
theilt sie der aufgehaltenen Masse eine neue entgegengesetzte Ge-
schwindigkeit, und diese muß derjenigen gleich sein, die sie selbst am
Ende behält; die den 4 Pfunden noch übrige Geschwindigkeit =
71/2 Fuß wird daher unter die 5 Pfunde so vertheilt, daß beide Mas-
sen 6 Fuß Geschwindigkeit erhalten. Man kann, obgleich der Stoß
bei ziemlich harten Körpern in einem einzigen Augenblicke seine Wir-
kung zu vollenden scheint, dennoch diese Wirkung als in auf einander
folgenden, sehr kleinen Zeitmomenten vorgehend ansehen, nämlich
so: die Masse 4 mit der Geschwindigkeit 9 trifft gegen die Masse 1
mit Geschwindigkeit 6, im ersten Momente verliere die letztere

die Quantitaͤt der Bewegung zu, wie einer Maſſe von 5 Pfunden,
die mit 6 Fuß Geſchwindigkeit bewegt wird, oder wie einer Maſſe
von 1 Pfund, die mit 30 Fuß Geſchwindigkeit in 1 Secunde fort-
geht, und die Producte 10.3 = 5.6 = 1.30. druͤcken die Quan-
titaͤt der Bewegung aus.

Dieſe Ueberzeugung, daß beim Stoße an einander gleiche
Quantitaͤten der Bewegung ſich voͤllig aufheben, wenn die Richtun-
gen der Bewegungen entgegengeſetzt ſind, fuͤhrt zu dem zweiten
Satze, daß bei unelaſtiſchen Koͤrpern, wo gar keine neuen Kraͤfte
thaͤtig ſind, nach dem Stoße die Summe der Bewegungen ebenſo
groß iſt als vor dem Stoße, wenn die Koͤrper einander folgten, und
daß der Unterſchied der beiden Bewegungsquantitaͤten vor dem Stoße
die Quantitaͤt der Bewegung nach dem Stoße giebt, wenn ſie einan-
der begegnen. Beiſpiele werden dies voͤllig erlaͤutern. Wenn zwei
Kugeln einander in genau entgegengeſetzten Richtungen begegnen,
die eine von 4 Pfund, die andre von 1 Pfund, jene mit der Ge-
ſchwindigkeit = 9, dieſe mit der Geſchwindigkeit = 6 Fuß in der
Secunde, ſo druͤckt 4. 9 = 36 bei jener 1. 6 = 6 bei dieſer die
Quantitaͤt der Bewegung vor dem Stoße aus, und im Stoße behaͤlt
die erſtere einen Ueberreſt von 30; aber ſie kann in ihrer Richtung
nicht fortgehen, ohne auch noch das eine Pfund mit fortzureißen, und
die Quantitaͤt der Bewegung = 30, auf die 5 vereinigten Pfunde
ausgetheilt, giebt dieſen 6 Fuß Geſchwindigkeit. Die Einwirkung
der mit groͤßerer Bewegung begabten Maſſe iſt alſo eine doppelte,
erſtlich raubt ſie der begegnenden Maſſe alle Geſchwindigkeit, dazu
waͤre ſie bei 1½ Fuß Geſchwindigkeit ſchon im Stande geweſen, und
ihr bleiben daher 7½ Fuß Geſchwindigkeit uͤbrig; aber zweitens er-
theilt ſie der aufgehaltenen Maſſe eine neue entgegengeſetzte Ge-
ſchwindigkeit, und dieſe muß derjenigen gleich ſein, die ſie ſelbſt am
Ende behaͤlt; die den 4 Pfunden noch uͤbrige Geſchwindigkeit =
7½ Fuß wird daher unter die 5 Pfunde ſo vertheilt, daß beide Maſ-
ſen 6 Fuß Geſchwindigkeit erhalten. Man kann, obgleich der Stoß
bei ziemlich harten Koͤrpern in einem einzigen Augenblicke ſeine Wir-
kung zu vollenden ſcheint, dennoch dieſe Wirkung als in auf einander
folgenden, ſehr kleinen Zeitmomenten vorgehend anſehen, naͤmlich
ſo: die Maſſe 4 mit der Geſchwindigkeit 9 trifft gegen die Maſſe 1
mit Geſchwindigkeit 6, im erſten Momente verliere die letztere

<TEI>
  <text>
    <body>
      <div n="1">
        <div n="2">
          <p><pb facs="#f0139" n="117"/>
die Quantita&#x0364;t der Bewegung zu, wie einer Ma&#x017F;&#x017F;e von 5 Pfunden,<lb/>
die mit 6 Fuß Ge&#x017F;chwindigkeit bewegt wird, oder wie einer Ma&#x017F;&#x017F;e<lb/>
von 1 Pfund, die mit 30 Fuß Ge&#x017F;chwindigkeit in 1 Secunde fort-<lb/>
geht, und die Producte 10.3 = 5.6 = 1.30. dru&#x0364;cken die Quan-<lb/>
tita&#x0364;t der Bewegung aus.</p><lb/>
          <p>Die&#x017F;e Ueberzeugung, daß beim Stoße an einander gleiche<lb/>
Quantita&#x0364;ten der Bewegung &#x017F;ich vo&#x0364;llig aufheben, wenn die Richtun-<lb/>
gen der Bewegungen entgegenge&#x017F;etzt &#x017F;ind, fu&#x0364;hrt zu dem zweiten<lb/>
Satze, daß bei unela&#x017F;ti&#x017F;chen Ko&#x0364;rpern, wo gar keine neuen Kra&#x0364;fte<lb/>
tha&#x0364;tig &#x017F;ind, nach dem Stoße die Summe der Bewegungen eben&#x017F;o<lb/>
groß i&#x017F;t als vor dem Stoße, wenn die Ko&#x0364;rper einander folgten, und<lb/>
daß der Unter&#x017F;chied der beiden Bewegungsquantita&#x0364;ten vor dem Stoße<lb/>
die Quantita&#x0364;t der Bewegung nach dem Stoße giebt, wenn &#x017F;ie einan-<lb/>
der begegnen. Bei&#x017F;piele werden dies vo&#x0364;llig erla&#x0364;utern. Wenn zwei<lb/>
Kugeln einander in genau entgegenge&#x017F;etzten Richtungen begegnen,<lb/>
die eine von 4 Pfund, die andre von 1 Pfund, jene mit der Ge-<lb/>
&#x017F;chwindigkeit = 9, die&#x017F;e mit der Ge&#x017F;chwindigkeit = 6 Fuß in der<lb/>
Secunde, &#x017F;o dru&#x0364;ckt 4. 9 = 36 bei jener 1. 6 = 6 bei die&#x017F;er die<lb/>
Quantita&#x0364;t der Bewegung vor dem Stoße aus, und im Stoße beha&#x0364;lt<lb/>
die er&#x017F;tere einen Ueberre&#x017F;t von 30; aber &#x017F;ie kann in ihrer Richtung<lb/>
nicht fortgehen, ohne auch noch das eine Pfund mit fortzureißen, und<lb/>
die Quantita&#x0364;t der Bewegung = 30, auf die 5 vereinigten Pfunde<lb/>
ausgetheilt, giebt die&#x017F;en 6 Fuß Ge&#x017F;chwindigkeit. Die Einwirkung<lb/>
der mit gro&#x0364;ßerer Bewegung begabten Ma&#x017F;&#x017F;e i&#x017F;t al&#x017F;o eine doppelte,<lb/>
er&#x017F;tlich raubt &#x017F;ie der begegnenden Ma&#x017F;&#x017F;e alle Ge&#x017F;chwindigkeit, dazu<lb/>
wa&#x0364;re &#x017F;ie bei 1½ Fuß Ge&#x017F;chwindigkeit &#x017F;chon im Stande gewe&#x017F;en, und<lb/>
ihr bleiben daher 7½ Fuß Ge&#x017F;chwindigkeit u&#x0364;brig; aber zweitens er-<lb/>
theilt &#x017F;ie der aufgehaltenen Ma&#x017F;&#x017F;e eine neue entgegenge&#x017F;etzte Ge-<lb/>
&#x017F;chwindigkeit, und die&#x017F;e muß derjenigen gleich &#x017F;ein, die &#x017F;ie &#x017F;elb&#x017F;t am<lb/>
Ende beha&#x0364;lt; die den 4 Pfunden noch u&#x0364;brige Ge&#x017F;chwindigkeit =<lb/>
7½ Fuß wird daher unter die 5 Pfunde &#x017F;o vertheilt, daß beide Ma&#x017F;-<lb/>
&#x017F;en 6 Fuß Ge&#x017F;chwindigkeit erhalten. Man kann, obgleich der Stoß<lb/>
bei ziemlich harten Ko&#x0364;rpern in einem einzigen Augenblicke &#x017F;eine Wir-<lb/>
kung zu vollenden &#x017F;cheint, dennoch die&#x017F;e Wirkung als in auf einander<lb/>
folgenden, &#x017F;ehr kleinen Zeitmomenten vorgehend an&#x017F;ehen, na&#x0364;mlich<lb/>
&#x017F;o: die Ma&#x017F;&#x017F;e 4 mit der Ge&#x017F;chwindigkeit 9 trifft gegen die Ma&#x017F;&#x017F;e 1<lb/>
mit Ge&#x017F;chwindigkeit 6, im er&#x017F;ten Momente verliere die letztere<lb/></p>
        </div>
      </div>
    </body>
  </text>
</TEI>
[117/0139] die Quantitaͤt der Bewegung zu, wie einer Maſſe von 5 Pfunden, die mit 6 Fuß Geſchwindigkeit bewegt wird, oder wie einer Maſſe von 1 Pfund, die mit 30 Fuß Geſchwindigkeit in 1 Secunde fort- geht, und die Producte 10.3 = 5.6 = 1.30. druͤcken die Quan- titaͤt der Bewegung aus. Dieſe Ueberzeugung, daß beim Stoße an einander gleiche Quantitaͤten der Bewegung ſich voͤllig aufheben, wenn die Richtun- gen der Bewegungen entgegengeſetzt ſind, fuͤhrt zu dem zweiten Satze, daß bei unelaſtiſchen Koͤrpern, wo gar keine neuen Kraͤfte thaͤtig ſind, nach dem Stoße die Summe der Bewegungen ebenſo groß iſt als vor dem Stoße, wenn die Koͤrper einander folgten, und daß der Unterſchied der beiden Bewegungsquantitaͤten vor dem Stoße die Quantitaͤt der Bewegung nach dem Stoße giebt, wenn ſie einan- der begegnen. Beiſpiele werden dies voͤllig erlaͤutern. Wenn zwei Kugeln einander in genau entgegengeſetzten Richtungen begegnen, die eine von 4 Pfund, die andre von 1 Pfund, jene mit der Ge- ſchwindigkeit = 9, dieſe mit der Geſchwindigkeit = 6 Fuß in der Secunde, ſo druͤckt 4. 9 = 36 bei jener 1. 6 = 6 bei dieſer die Quantitaͤt der Bewegung vor dem Stoße aus, und im Stoße behaͤlt die erſtere einen Ueberreſt von 30; aber ſie kann in ihrer Richtung nicht fortgehen, ohne auch noch das eine Pfund mit fortzureißen, und die Quantitaͤt der Bewegung = 30, auf die 5 vereinigten Pfunde ausgetheilt, giebt dieſen 6 Fuß Geſchwindigkeit. Die Einwirkung der mit groͤßerer Bewegung begabten Maſſe iſt alſo eine doppelte, erſtlich raubt ſie der begegnenden Maſſe alle Geſchwindigkeit, dazu waͤre ſie bei 1½ Fuß Geſchwindigkeit ſchon im Stande geweſen, und ihr bleiben daher 7½ Fuß Geſchwindigkeit uͤbrig; aber zweitens er- theilt ſie der aufgehaltenen Maſſe eine neue entgegengeſetzte Ge- ſchwindigkeit, und dieſe muß derjenigen gleich ſein, die ſie ſelbſt am Ende behaͤlt; die den 4 Pfunden noch uͤbrige Geſchwindigkeit = 7½ Fuß wird daher unter die 5 Pfunde ſo vertheilt, daß beide Maſ- ſen 6 Fuß Geſchwindigkeit erhalten. Man kann, obgleich der Stoß bei ziemlich harten Koͤrpern in einem einzigen Augenblicke ſeine Wir- kung zu vollenden ſcheint, dennoch dieſe Wirkung als in auf einander folgenden, ſehr kleinen Zeitmomenten vorgehend anſehen, naͤmlich ſo: die Maſſe 4 mit der Geſchwindigkeit 9 trifft gegen die Maſſe 1 mit Geſchwindigkeit 6, im erſten Momente verliere die letztere

Suche im Werk

Hilfe

Informationen zum Werk

Download dieses Werks

XML (TEI P5) · HTML · Text
TCF (text annotation layer)
XML (TEI P5 inkl. att.linguistic)

Metadaten zum Werk

TEI-Header · CMDI · Dublin Core

Ansichten dieser Seite

Voyant Tools ?

Language Resource Switchboard?

Feedback

Sie haben einen Fehler gefunden? Dann können Sie diesen über unsere Qualitätssicherungsplattform DTAQ melden.

Kommentar zur DTA-Ausgabe

Dieses Werk wurde gemäß den DTA-Transkriptionsrichtlinien im Double-Keying-Verfahren von Muttersprachlern erfasst und in XML/TEI P5 nach DTA-Basisformat kodiert.




Ansicht auf Standard zurückstellen

URL zu diesem Werk: https://www.deutschestextarchiv.de/brandes_naturlehre01_1830
URL zu dieser Seite: https://www.deutschestextarchiv.de/brandes_naturlehre01_1830/139
Zitationshilfe: Brandes, Heinrich Wilhelm: Vorlesungen über die Naturlehre. Bd. 1. Leipzig, 1830, S. 117. In: Deutsches Textarchiv <https://www.deutschestextarchiv.de/brandes_naturlehre01_1830/139>, abgerufen am 25.11.2024.