Gerstner, Franz Joseph von: Handbuch der Mechanik. Bd. 2: Mechanik flüssiger Körper. Prag, 1832.Stauhöhe bei einem Wehre. ner Zusammenziehung. Setzen wir demnach den Zusammenziehungskoeffizienten, wel-cher für diesen Fall Statt findet = m, so haben wir die Gleichung m . B [Formel 1] = b . a . c oder 2/3 . x [Formel 2] + (a -- h) [Formel 3] = [Formel 4] , woraus nunmehr die Stauhöhe x zu su- chen ist. Da für die strenge Auflösung die Grösse x von dem Wurzelzeichen befreit werden muss und hierdurch eine Gleichung des 6ten Grades zum Vorschein kommt, welche nur durch Näherung aufgelösst werden kann, so ist es vortheilhafter, die unbe- kannte x sogleich aus der Gleichung 2/3 . x [Formel 5] + (a -- h) [Formel 6] -- [Formel 7] = 0 durch Annäherung zu bestimmen. Zur Bestimmung des Zusammenziehungskoeffizienten m werden wieder Versuche Herr Eytelwein nimmt für Uiberfälle ohne Flügelwände m . 2 sqrt g = 5 im Rheinl. §. 246. Beispiel. Es sey die natürliche Höhe des Flusswassers a = 3 Fuss, die Höhe Für diese Werthe gibt die aufgestellte Gleichung 2/3 x
[Formel 8]
+
[Formel 9]
-- 10,514 = 0. Stauhöhe bei einem Wehre. ner Zusammenziehung. Setzen wir demnach den Zusammenziehungskoeffizienten, wel-cher für diesen Fall Statt findet = m, so haben wir die Gleichung m . B [Formel 1] = b . a . c oder ⅔ . x [Formel 2] + (a — h) [Formel 3] = [Formel 4] , woraus nunmehr die Stauhöhe x zu su- chen ist. Da für die strenge Auflösung die Grösse x von dem Wurzelzeichen befreit werden muss und hierdurch eine Gleichung des 6ten Grades zum Vorschein kommt, welche nur durch Näherung aufgelösst werden kann, so ist es vortheilhafter, die unbe- kannte x sogleich aus der Gleichung ⅔ . x [Formel 5] + (a — h) [Formel 6] — [Formel 7] = 0 durch Annäherung zu bestimmen. Zur Bestimmung des Zusammenziehungskoeffizienten m werden wieder Versuche Herr Eytelwein nimmt für Uiberfälle ohne Flügelwände m . 2 √ g = 5 im Rheinl. §. 246. Beispiel. Es sey die natürliche Höhe des Flusswassers a = 3 Fuss, die Höhe Für diese Werthe gibt die aufgestellte Gleichung ⅔ x
[Formel 8]
+
[Formel 9]
— 10,514 = 0. <TEI> <text> <body> <div n="1"> <div n="2"> <div n="3"> <p><pb facs="#f0348" n="330"/><fw place="top" type="header"><hi rendition="#i">Stauhöhe bei einem Wehre</hi>.</fw><lb/> ner Zusammenziehung. Setzen wir demnach den Zusammenziehungskoeffizienten, wel-<lb/> cher für diesen Fall Statt findet = m, so haben wir die Gleichung<lb/> m . B <formula/> = b . a . c oder<lb/> ⅔ . x <formula/> + (a — h) <formula/> = <formula/>, woraus nunmehr die Stauhöhe x zu su-<lb/> chen ist. Da für die strenge Auflösung die Grösse x von dem Wurzelzeichen befreit<lb/> werden muss und hierdurch eine Gleichung des 6<hi rendition="#sup">ten</hi> Grades zum Vorschein kommt,<lb/> welche nur durch Näherung aufgelösst werden kann, so ist es vortheilhafter, die unbe-<lb/> kannte x sogleich aus der Gleichung ⅔ . x <formula/> + (a — h) <formula/> — <formula/> = 0<lb/> durch Annäherung zu bestimmen.</p><lb/> <p>Zur Bestimmung des Zusammenziehungskoeffizienten m werden wieder Versuche<lb/> erfordert. Diese sind leider bisher noch nicht im Grossen angestellt worden. Die<lb/> wenigen hierüber im Kleinen gemachten Versuche sind in den gehaltvollen: „Unter-<lb/> suchungen über den Effekt einiger in Rheinland-Westphalen bestehenden Wasser-<lb/> werke von <hi rendition="#i">P. N. C. Egen</hi>, Abtheilung I., Berlin 1831“ verzeichnet. Als Resultat der<lb/> daselbst angeführten Beobachtungen wird Seite 34 gesagt, dass bei den meisten Uiber-<lb/> fällen, die im Grossen vorkommen, <hi rendition="#g">auf allen Seiten</hi> Zusammenziehung Statt finde<lb/> und dass der Koeffizient für diesen Fall, wenn der Abfluss frei ist = 0,<hi rendition="#sub">63</hi> sey.</p><lb/> <p>Herr <hi rendition="#i">Eytelwein</hi> nimmt für Uiberfälle ohne Flügelwände m . 2 √ g = 5 im Rheinl.<lb/> Maass an, woraus ebenfalls m = 0,<hi rendition="#sub">633</hi> folgt; für Uiberfälle mit Flügelwänden, oder wenn die<lb/> mittlere Breite des Flussbettes der Breite des Wehres oder Uiberfalles gleichkommt,<lb/> setzt derselbe m . 2 √ g = 6,<hi rendition="#sub">76</hi> woraus m = 0,<hi rendition="#sub">856</hi> folgt.</p> </div><lb/> <div n="3"> <head>§. 246.</head><lb/> <p><hi rendition="#g">Beispiel</hi>. Es sey die natürliche Höhe des Flusswassers a = 3 Fuss, die Höhe<lb/> des Wehres h = 2 Fuss, die Geschwindigkeit des Wassers c = 4 Fuss, die Länge des<lb/> schief gestellten Wehres B = 4/3 b und der Zusammenziehungskoeffizient m = 0,<hi rendition="#sub">856</hi>.</p><lb/> <p>Für diese Werthe gibt die aufgestellte Gleichung ⅔ x <formula/> + <formula/> — 10,<hi rendition="#sub">514</hi> = 0.<lb/> Um hieraus x nach der bekannten Näherungsmethode aufzulösen, wollen wir zuerst<lb/> x = 1 Fuss setzen; diess gibt 5,<hi rendition="#sub">249</hi> + 8,<hi rendition="#sub">832</hi> — 10,<hi rendition="#sub">514</hi> = 14,<hi rendition="#sub">081</hi> — 10,<hi rendition="#sub">514</hi> = + 3,<hi rendition="#sub">567</hi>. Da die<lb/> positiven Glieder kleiner gemacht werden müssen, so setzen wir x = 0,<hi rendition="#sub">7</hi> Fuss und erhalten<lb/> 3,<hi rendition="#sub">074</hi> + 7,<hi rendition="#sub">707</hi> — 10,<hi rendition="#sub">514</hi> = 0,<hi rendition="#sub">267</hi>. Um den richtigen Werth für x mit einiger Wahrschein-<lb/> lichkeit zu finden, können wir sagen: die Verminderung der Unbekannten um 0,<hi rendition="#sub">3</hi>, nämlich<lb/> von x = 1 auf x = 0,<hi rendition="#sub">7</hi> bewirkte in dem Werthe der Gleichung eine Verminderung um 3,<hi rendition="#sub">300</hi>,<lb/> nämlich von + 3,<hi rendition="#sub">567</hi> auf + 0,<hi rendition="#sub">267</hi>; demnach wird eine Verminderung der Unbekannten um<lb/> z eine Verminderung im Werthe der Gleichung um 3,<hi rendition="#sub">567</hi>, nämlich von + 3,<hi rendition="#sub">567</hi> auf 0 bewir-<lb/> ken. Aus dieser Proporzion folgt z = <formula/> = 0,<hi rendition="#sub">324</hi>, demnach x = 1 — 0,<hi rendition="#sub">324</hi> = 0,<hi rendition="#sub">676</hi><lb/> Fuss. Wird dieser Werth in die obige Gleichung substituirt, so ist<lb/> 2,<hi rendition="#sub">918</hi> + 7,<hi rendition="#sub">610</hi> — 10,<hi rendition="#sub">514</hi> = + 0,<hi rendition="#sub">014</hi>. Sucht man abermals aus einer ähnlichen Proporzion die<lb/> Verbesserung der Unbekannten nach dem ersten und letzten Resultate, so findet man<lb/></p> </div> </div> </div> </body> </text> </TEI> [330/0348]
Stauhöhe bei einem Wehre.
ner Zusammenziehung. Setzen wir demnach den Zusammenziehungskoeffizienten, wel-
cher für diesen Fall Statt findet = m, so haben wir die Gleichung
m . B [FORMEL] = b . a . c oder
⅔ . x [FORMEL] + (a — h) [FORMEL] = [FORMEL], woraus nunmehr die Stauhöhe x zu su-
chen ist. Da für die strenge Auflösung die Grösse x von dem Wurzelzeichen befreit
werden muss und hierdurch eine Gleichung des 6ten Grades zum Vorschein kommt,
welche nur durch Näherung aufgelösst werden kann, so ist es vortheilhafter, die unbe-
kannte x sogleich aus der Gleichung ⅔ . x [FORMEL] + (a — h) [FORMEL] — [FORMEL] = 0
durch Annäherung zu bestimmen.
Zur Bestimmung des Zusammenziehungskoeffizienten m werden wieder Versuche
erfordert. Diese sind leider bisher noch nicht im Grossen angestellt worden. Die
wenigen hierüber im Kleinen gemachten Versuche sind in den gehaltvollen: „Unter-
suchungen über den Effekt einiger in Rheinland-Westphalen bestehenden Wasser-
werke von P. N. C. Egen, Abtheilung I., Berlin 1831“ verzeichnet. Als Resultat der
daselbst angeführten Beobachtungen wird Seite 34 gesagt, dass bei den meisten Uiber-
fällen, die im Grossen vorkommen, auf allen Seiten Zusammenziehung Statt finde
und dass der Koeffizient für diesen Fall, wenn der Abfluss frei ist = 0,63 sey.
Herr Eytelwein nimmt für Uiberfälle ohne Flügelwände m . 2 √ g = 5 im Rheinl.
Maass an, woraus ebenfalls m = 0,633 folgt; für Uiberfälle mit Flügelwänden, oder wenn die
mittlere Breite des Flussbettes der Breite des Wehres oder Uiberfalles gleichkommt,
setzt derselbe m . 2 √ g = 6,76 woraus m = 0,856 folgt.
§. 246.
Beispiel. Es sey die natürliche Höhe des Flusswassers a = 3 Fuss, die Höhe
des Wehres h = 2 Fuss, die Geschwindigkeit des Wassers c = 4 Fuss, die Länge des
schief gestellten Wehres B = 4/3 b und der Zusammenziehungskoeffizient m = 0,856.
Für diese Werthe gibt die aufgestellte Gleichung ⅔ x [FORMEL] + [FORMEL] — 10,514 = 0.
Um hieraus x nach der bekannten Näherungsmethode aufzulösen, wollen wir zuerst
x = 1 Fuss setzen; diess gibt 5,249 + 8,832 — 10,514 = 14,081 — 10,514 = + 3,567. Da die
positiven Glieder kleiner gemacht werden müssen, so setzen wir x = 0,7 Fuss und erhalten
3,074 + 7,707 — 10,514 = 0,267. Um den richtigen Werth für x mit einiger Wahrschein-
lichkeit zu finden, können wir sagen: die Verminderung der Unbekannten um 0,3, nämlich
von x = 1 auf x = 0,7 bewirkte in dem Werthe der Gleichung eine Verminderung um 3,300,
nämlich von + 3,567 auf + 0,267; demnach wird eine Verminderung der Unbekannten um
z eine Verminderung im Werthe der Gleichung um 3,567, nämlich von + 3,567 auf 0 bewir-
ken. Aus dieser Proporzion folgt z = [FORMEL] = 0,324, demnach x = 1 — 0,324 = 0,676
Fuss. Wird dieser Werth in die obige Gleichung substituirt, so ist
2,918 + 7,610 — 10,514 = + 0,014. Sucht man abermals aus einer ähnlichen Proporzion die
Verbesserung der Unbekannten nach dem ersten und letzten Resultate, so findet man
Suche im WerkInformationen zum Werk
Download dieses Werks
XML (TEI P5) ·
HTML ·
Text Metadaten zum WerkTEI-Header · CMDI · Dublin Core Ansichten dieser Seite
Voyant Tools ?Language Resource Switchboard?FeedbackSie haben einen Fehler gefunden? Dann können Sie diesen über unsere Qualitätssicherungsplattform DTAQ melden. Kommentar zur DTA-AusgabeDieses Werk wurde gemäß den DTA-Transkriptionsrichtlinien im Double-Keying-Verfahren von Nicht-Muttersprachlern erfasst und in XML/TEI P5 nach DTA-Basisformat kodiert.
|
Insbesondere im Hinblick auf die §§ 86a StGB und 130 StGB wird festgestellt, dass die auf diesen Seiten abgebildeten Inhalte weder in irgendeiner Form propagandistischen Zwecken dienen, oder Werbung für verbotene Organisationen oder Vereinigungen darstellen, oder nationalsozialistische Verbrechen leugnen oder verharmlosen, noch zum Zwecke der Herabwürdigung der Menschenwürde gezeigt werden. Die auf diesen Seiten abgebildeten Inhalte (in Wort und Bild) dienen im Sinne des § 86 StGB Abs. 3 ausschließlich historischen, sozial- oder kulturwissenschaftlichen Forschungszwecken. Ihre Veröffentlichung erfolgt in der Absicht, Wissen zur Anregung der intellektuellen Selbstständigkeit und Verantwortungsbereitschaft des Staatsbürgers zu vermitteln und damit der Förderung seiner Mündigkeit zu dienen.
2007–2024 Deutsches Textarchiv, Berlin-Brandenburgische Akademie der Wissenschaften.
Kontakt: redaktion(at)deutschestextarchiv.de. |