Gerstner, Franz Joseph von: Handbuch der Mechanik. Bd. 2: Mechanik flüssiger Körper. Prag, 1832.Ungleichförmige Bewegung des Wassers. früher erinnerten, die Stauhöhe auf der halben Stauweite nur den 4ten Theil der gan-zen Stauhöhe beträgt. Demnach ist die mittlere Tiefe [Formel 1] Fuss. Um abzukürzen, wollen wir
[Formel 2]
setzen und im Nenner p zum gemeinschaft-
lichen Faktor machen, dadurch erhalten wir [Formel 3] . Um diese Gleichung zu integriren, müssen wir vorläufig die Grösse z3 im Zähler durch die Division mit dem Nenner wegschaffen, und es ist [Formel 4] . Wird hier Zähler und Nenner des Bruches mit p multiplizirt, und im Nenner für p sein Werth gesetzt, so erhalten wir: [Formel 5] . Nun ist aber z -- a ein gemeinschaftlicher Faktor des Nenners; dadurch erhält der Nenner folgende Gestalt: [Formel 6] und weil [Formel 7] ist, auch = [Formel 8] . Dieses statt des gedachten Nenners geschrieben gibt: [Formel 9] . Setzen wir hierin zur Abkürzung die Grössen [Formel 10] und [Formel 11] , so ist [Formel 12] . Wird nun diese Funkzion nach der bekannten Methode in parzielle Brüche zerlegt, so erhal- ten wir: [Formel 13] . Zur Bestimmung der Grössen M, P und Q dienen die Gleichungen [Formel 14] und [Formel 15] . Wir erhalten sonach [Formel 16] . Hiervon ist das Integrale [Formel 17] . Ungleichförmige Bewegung des Wassers. früher erinnerten, die Stauhöhe auf der halben Stauweite nur den 4ten Theil der gan-zen Stauhöhe beträgt. Demnach ist die mittlere Tiefe [Formel 1] Fuss. Um abzukürzen, wollen wir
[Formel 2]
setzen und im Nenner p zum gemeinschaft-
lichen Faktor machen, dadurch erhalten wir [Formel 3] . Um diese Gleichung zu integriren, müssen wir vorläufig die Grösse z3 im Zähler durch die Division mit dem Nenner wegschaffen, und es ist [Formel 4] . Wird hier Zähler und Nenner des Bruches mit p multiplizirt, und im Nenner für p sein Werth gesetzt, so erhalten wir: [Formel 5] . Nun ist aber z — a ein gemeinschaftlicher Faktor des Nenners; dadurch erhält der Nenner folgende Gestalt: [Formel 6] und weil [Formel 7] ist, auch = [Formel 8] . Dieses statt des gedachten Nenners geschrieben gibt: [Formel 9] . Setzen wir hierin zur Abkürzung die Grössen [Formel 10] und [Formel 11] , so ist [Formel 12] . Wird nun diese Funkzion nach der bekannten Methode in parzielle Brüche zerlegt, so erhal- ten wir: [Formel 13] . Zur Bestimmung der Grössen M, P und Q dienen die Gleichungen [Formel 14] und [Formel 15] . Wir erhalten sonach [Formel 16] . Hiervon ist das Integrale [Formel 17] . <TEI> <text> <body> <div n="1"> <div n="2"> <div n="3"> <p><pb facs="#f0356" n="338"/><fw place="top" type="header"><hi rendition="#i">Ungleichförmige Bewegung des Wassers.</hi></fw><lb/> früher erinnerten, die Stauhöhe auf der halben Stauweite nur den <hi rendition="#g">4ten</hi> Theil der gan-<lb/> zen Stauhöhe beträgt. Demnach ist die mittlere Tiefe <formula/> Fuss.<lb/><note next="#note-0357" xml:id="note-0356" prev="#note-0355" place="foot" n="*)">Um abzukürzen, wollen wir <formula/> setzen und im Nenner p zum gemeinschaft-<lb/> lichen Faktor machen, dadurch erhalten wir<lb/><hi rendition="#c"><formula/>.</hi><lb/> Um diese Gleichung zu integriren, müssen wir vorläufig die Grösse z<hi rendition="#sup">3</hi> im Zähler durch die<lb/> Division mit dem Nenner wegschaffen, und es ist<lb/><hi rendition="#c"><formula/>.</hi><lb/> Wird hier Zähler und Nenner des Bruches mit p multiplizirt, und im Nenner für p sein<lb/> Werth gesetzt, so erhalten wir:<lb/><hi rendition="#c"><formula/>.</hi><lb/> Nun ist aber z — a ein gemeinschaftlicher Faktor des Nenners; dadurch erhält der Nenner<lb/> folgende Gestalt:<lb/><hi rendition="#c"><formula/></hi> und weil <formula/> ist, auch = <formula/>.<lb/> Dieses statt des gedachten Nenners geschrieben gibt:<lb/><hi rendition="#c"><formula/>.</hi><lb/> Setzen wir hierin zur Abkürzung die Grössen <formula/> und <formula/>,<lb/> so ist <formula/>.<lb/> Wird nun diese Funkzion nach der bekannten Methode in parzielle Brüche zerlegt, so erhal-<lb/> ten wir: <formula/>.<lb/> Zur Bestimmung der Grössen M, P und Q dienen die Gleichungen<lb/><formula/> und <formula/>. Wir erhalten sonach<lb/><formula/>. Hiervon ist das Integrale<lb/><formula/>.</note><lb/></p> </div> </div> </div> </body> </text> </TEI> [338/0356]
Ungleichförmige Bewegung des Wassers.
früher erinnerten, die Stauhöhe auf der halben Stauweite nur den 4ten Theil der gan-
zen Stauhöhe beträgt. Demnach ist die mittlere Tiefe [FORMEL] Fuss.
*)
*) Um abzukürzen, wollen wir [FORMEL] setzen und im Nenner p zum gemeinschaft-
lichen Faktor machen, dadurch erhalten wir
[FORMEL].
Um diese Gleichung zu integriren, müssen wir vorläufig die Grösse z3 im Zähler durch die
Division mit dem Nenner wegschaffen, und es ist
[FORMEL].
Wird hier Zähler und Nenner des Bruches mit p multiplizirt, und im Nenner für p sein
Werth gesetzt, so erhalten wir:
[FORMEL].
Nun ist aber z — a ein gemeinschaftlicher Faktor des Nenners; dadurch erhält der Nenner
folgende Gestalt:
[FORMEL] und weil [FORMEL] ist, auch = [FORMEL].
Dieses statt des gedachten Nenners geschrieben gibt:
[FORMEL].
Setzen wir hierin zur Abkürzung die Grössen [FORMEL] und [FORMEL],
so ist [FORMEL].
Wird nun diese Funkzion nach der bekannten Methode in parzielle Brüche zerlegt, so erhal-
ten wir: [FORMEL].
Zur Bestimmung der Grössen M, P und Q dienen die Gleichungen
[FORMEL] und [FORMEL]. Wir erhalten sonach
[FORMEL]. Hiervon ist das Integrale
[FORMEL].
Suche im WerkInformationen zum Werk
Download dieses Werks
XML (TEI P5) ·
HTML ·
Text Metadaten zum WerkTEI-Header · CMDI · Dublin Core Ansichten dieser Seite
Voyant Tools ?Language Resource Switchboard?FeedbackSie haben einen Fehler gefunden? Dann können Sie diesen über unsere Qualitätssicherungsplattform DTAQ melden. Kommentar zur DTA-AusgabeDieses Werk wurde gemäß den DTA-Transkriptionsrichtlinien im Double-Keying-Verfahren von Nicht-Muttersprachlern erfasst und in XML/TEI P5 nach DTA-Basisformat kodiert.
|
Insbesondere im Hinblick auf die §§ 86a StGB und 130 StGB wird festgestellt, dass die auf diesen Seiten abgebildeten Inhalte weder in irgendeiner Form propagandistischen Zwecken dienen, oder Werbung für verbotene Organisationen oder Vereinigungen darstellen, oder nationalsozialistische Verbrechen leugnen oder verharmlosen, noch zum Zwecke der Herabwürdigung der Menschenwürde gezeigt werden. Die auf diesen Seiten abgebildeten Inhalte (in Wort und Bild) dienen im Sinne des § 86 StGB Abs. 3 ausschließlich historischen, sozial- oder kulturwissenschaftlichen Forschungszwecken. Ihre Veröffentlichung erfolgt in der Absicht, Wissen zur Anregung der intellektuellen Selbstständigkeit und Verantwortungsbereitschaft des Staatsbürgers zu vermitteln und damit der Förderung seiner Mündigkeit zu dienen.
2007–2024 Deutsches Textarchiv, Berlin-Brandenburgische Akademie der Wissenschaften.
Kontakt: redaktion(at)deutschestextarchiv.de. |