Gerstner, Franz Joseph von: Handbuch der Mechanik. Bd. 2: Mechanik flüssiger Körper. Prag, 1832.Bestimmung der Staulinie des Wassers. Für die Beantwortung des ersten Theiles der Frage ist die grösste Wassertiefe am Wehrez = 5,5 Fuss. Setzt man nun in die obige für die Stauweite aufgestellte allgemeine Gleichung die Werthe und zwar z = 5,5, b = h', a = 2 Fuss und übersetzt die natürlichen Logarithmen zugleich in briggische, so findet man für die fragliche Stauweite die abge- kürzte Gleichung [Formel 1] . Nach dieser Gleichung findet man, wenn x zugleich auf Klafter reduzirt wird, Für den zweiten Theil der Frage lässt sich die Höhe, auf welche das Wasser durch Nach dieser Gleichung findet man, wenn x zugleich auf Klafter reduzirt wird Für den dritten Theil der Frage dient zur Berechnung der Höhe, auf welche der Bevor wir nun zur Berechnung der Stauweiten schreiten können, müssen wir vor- Bestimmung der Staulinie des Wassers. Für die Beantwortung des ersten Theiles der Frage ist die grösste Wassertiefe am Wehrez = 5,5 Fuss. Setzt man nun in die obige für die Stauweite aufgestellte allgemeine Gleichung die Werthe und zwar z = 5,5, β = h', a = 2 Fuss und übersetzt die natürlichen Logarithmen zugleich in briggische, so findet man für die fragliche Stauweite die abge- kürzte Gleichung [Formel 1] . Nach dieser Gleichung findet man, wenn x zugleich auf Klafter reduzirt wird, Für den zweiten Theil der Frage lässt sich die Höhe, auf welche das Wasser durch Nach dieser Gleichung findet man, wenn x zugleich auf Klafter reduzirt wird Für den dritten Theil der Frage dient zur Berechnung der Höhe, auf welche der Bevor wir nun zur Berechnung der Stauweiten schreiten können, müssen wir vor- <TEI> <text> <body> <div n="1"> <div n="2"> <div n="3"> <p><pb facs="#f0358" n="340"/><fw place="top" type="header"><hi rendition="#i">Bestimmung der Staulinie des Wassers.</hi></fw><lb/> Für die Beantwortung des ersten Theiles der Frage ist die grösste Wassertiefe am Wehre<lb/> z = 5,<hi rendition="#sub">5</hi> Fuss. Setzt man nun in die obige für die Stauweite aufgestellte allgemeine<lb/> Gleichung die Werthe und zwar z = 5,<hi rendition="#sub">5</hi>, <hi rendition="#i">β</hi> = h', a = 2 Fuss und übersetzt die natürlichen<lb/> Logarithmen zugleich in briggische, so findet man für die fragliche Stauweite die abge-<lb/> kürzte Gleichung<lb/><formula/>.</p><lb/> <p>Nach dieser Gleichung findet man, wenn x zugleich auf Klafter reduzirt wird,<lb/> für die gestaute Höhe h' = 5,<hi rendition="#sub">5</hi>; 5 ; 4,<hi rendition="#sub">5</hi>; 4 ; 3,<hi rendition="#sub">5</hi>; 3 ; 2,<hi rendition="#sub">5</hi>; 2,<hi rendition="#sub">1</hi>; 2,<hi rendition="#sub">05</hi>.. Fuss<lb/> die zugehörige Stauweite x = 0 ; 156,<hi rendition="#sub">4</hi>; 315,<hi rendition="#sub">6</hi>; 479,<hi rendition="#sub">2</hi>; 650,<hi rendition="#sub">5</hi>; 837,<hi rendition="#sub">5</hi>; 1066,<hi rendition="#sub">6</hi>; 1415,<hi rendition="#sub">5</hi>; 1537,<hi rendition="#sub">9</hi> Klft.</p><lb/> <p>Für den zweiten Theil der Frage lässt sich die Höhe, auf welche das Wasser durch<lb/> den Einbau des Wehres für den Fall gehoben wird, wenn der ganze Wasserzufluss über<lb/> das Wehr abfliessen muss, nach der Gleichung §. 248 für die Stauhöhe berechnen, wenn<lb/> man in dieser h = 5,<hi rendition="#sub">5</hi>′, a = 2′, c = 3,<hi rendition="#sub">5</hi> den Zusammenziehungskoeffizienten m = 0,<hi rendition="#sub">954</hi> und<lb/> b = B setzt, man findet sodann <formula/> Fuss, um wie viel nämlich<lb/> der Wasserspiegel gehoben wird. Es ist daher die grösste Wassertiefe am Wehre<lb/> z = 2 + 4,<hi rendition="#sub">75</hi> = 6,<hi rendition="#sub">75</hi> Fuss. Setzt man diesen Werth für z in die allgemeine Gleichung für<lb/> die Stauweite, und bemerkt, dass die übrigen Werthe für p, <hi rendition="#i">γ</hi>, M und P ungeändert blei-<lb/> ben, so erhält man für die Stauweiten die abgekürzte Gleichung<lb/><formula/>.</p><lb/> <p>Nach dieser Gleichung findet man, wenn x zugleich auf Klafter reduzirt wird<lb/> für die gestaute Wassertiefe<lb/> h' = 6,<hi rendition="#sub">75</hi>; 6,<hi rendition="#sub">5</hi>; 6 ; 5,<hi rendition="#sub">5</hi>; 5 ; 4,<hi rendition="#sub">5</hi>; 4 ; 3,<hi rendition="#sub">5</hi>; 3 ; 2,<hi rendition="#sub">5</hi>; 2,<hi rendition="#sub">1</hi>; 2,<hi rendition="#sub">05</hi> Fuss.<lb/> die zugehörige Stauweite<lb/> x = 0 ; 76,<hi rendition="#sub">4</hi>; 229,<hi rendition="#sub">8</hi>; 384,<hi rendition="#sub">4</hi>; 540,<hi rendition="#sub">9</hi>; 700,<hi rendition="#sub">0</hi>; 863,<hi rendition="#sub">6</hi>; 1034,<hi rendition="#sub">9</hi>; 1221,<hi rendition="#sub">9</hi>; 1451,<hi rendition="#sub">0</hi>; 1501,<hi rendition="#sub">7</hi>; 1922,<hi rendition="#sub">3</hi> Klftr.</p><lb/> <p>Für den dritten Theil der Frage dient zur Berechnung der Höhe, auf welche der<lb/> Wasserspiegel des angeschwollenen Flusses durch das Wehr gehoben wird, die §. 245<lb/> für die Stauhöhe x in diesem Falle aufgestellte Gleichung<lb/><formula/>, wenn man nämlich unserm Beispiele zu<lb/> Folge hierin die Wassertiefe a = 6 Fuss, die Höhe des Wehres h = 5,<hi rendition="#sub">5</hi>, die Geschwin-<lb/> digkeit des Wassers c = 6, m wie früher = 0,<hi rendition="#sub">954</hi> und b = B setzt. Man findet sodann<lb/><formula/>. Die Auflösung dieser Gleichung durch Nähe-<lb/> rung gibt sodann den Werth für die Erhöhung des Wasserspiegels x = 3,<hi rendition="#sub">20</hi>. Es ist<lb/> sonach für die Berechnung der Stauweiten die grösste Wassertiefe am Wehre<lb/> z = 6 + 3,<hi rendition="#sub">2</hi> = 9,<hi rendition="#sub">2</hi> Fuss.</p><lb/> <p>Bevor wir nun zur Berechnung der Stauweiten schreiten können, müssen wir vor-<lb/> erst die in der allgemeinen Gleichung für die Stauweite vorkommenden Koeffizienten<lb/></p> </div> </div> </div> </body> </text> </TEI> [340/0358]
Bestimmung der Staulinie des Wassers.
Für die Beantwortung des ersten Theiles der Frage ist die grösste Wassertiefe am Wehre
z = 5,5 Fuss. Setzt man nun in die obige für die Stauweite aufgestellte allgemeine
Gleichung die Werthe und zwar z = 5,5, β = h', a = 2 Fuss und übersetzt die natürlichen
Logarithmen zugleich in briggische, so findet man für die fragliche Stauweite die abge-
kürzte Gleichung
[FORMEL].
Nach dieser Gleichung findet man, wenn x zugleich auf Klafter reduzirt wird,
für die gestaute Höhe h' = 5,5; 5 ; 4,5; 4 ; 3,5; 3 ; 2,5; 2,1; 2,05.. Fuss
die zugehörige Stauweite x = 0 ; 156,4; 315,6; 479,2; 650,5; 837,5; 1066,6; 1415,5; 1537,9 Klft.
Für den zweiten Theil der Frage lässt sich die Höhe, auf welche das Wasser durch
den Einbau des Wehres für den Fall gehoben wird, wenn der ganze Wasserzufluss über
das Wehr abfliessen muss, nach der Gleichung §. 248 für die Stauhöhe berechnen, wenn
man in dieser h = 5,5′, a = 2′, c = 3,5 den Zusammenziehungskoeffizienten m = 0,954 und
b = B setzt, man findet sodann [FORMEL] Fuss, um wie viel nämlich
der Wasserspiegel gehoben wird. Es ist daher die grösste Wassertiefe am Wehre
z = 2 + 4,75 = 6,75 Fuss. Setzt man diesen Werth für z in die allgemeine Gleichung für
die Stauweite, und bemerkt, dass die übrigen Werthe für p, γ, M und P ungeändert blei-
ben, so erhält man für die Stauweiten die abgekürzte Gleichung
[FORMEL].
Nach dieser Gleichung findet man, wenn x zugleich auf Klafter reduzirt wird
für die gestaute Wassertiefe
h' = 6,75; 6,5; 6 ; 5,5; 5 ; 4,5; 4 ; 3,5; 3 ; 2,5; 2,1; 2,05 Fuss.
die zugehörige Stauweite
x = 0 ; 76,4; 229,8; 384,4; 540,9; 700,0; 863,6; 1034,9; 1221,9; 1451,0; 1501,7; 1922,3 Klftr.
Für den dritten Theil der Frage dient zur Berechnung der Höhe, auf welche der
Wasserspiegel des angeschwollenen Flusses durch das Wehr gehoben wird, die §. 245
für die Stauhöhe x in diesem Falle aufgestellte Gleichung
[FORMEL], wenn man nämlich unserm Beispiele zu
Folge hierin die Wassertiefe a = 6 Fuss, die Höhe des Wehres h = 5,5, die Geschwin-
digkeit des Wassers c = 6, m wie früher = 0,954 und b = B setzt. Man findet sodann
[FORMEL]. Die Auflösung dieser Gleichung durch Nähe-
rung gibt sodann den Werth für die Erhöhung des Wasserspiegels x = 3,20. Es ist
sonach für die Berechnung der Stauweiten die grösste Wassertiefe am Wehre
z = 6 + 3,2 = 9,2 Fuss.
Bevor wir nun zur Berechnung der Stauweiten schreiten können, müssen wir vor-
erst die in der allgemeinen Gleichung für die Stauweite vorkommenden Koeffizienten
Suche im WerkInformationen zum Werk
Download dieses Werks
XML (TEI P5) ·
HTML ·
Text Metadaten zum WerkTEI-Header · CMDI · Dublin Core Ansichten dieser Seite
Voyant Tools ?Language Resource Switchboard?FeedbackSie haben einen Fehler gefunden? Dann können Sie diesen über unsere Qualitätssicherungsplattform DTAQ melden. Kommentar zur DTA-AusgabeDieses Werk wurde gemäß den DTA-Transkriptionsrichtlinien im Double-Keying-Verfahren von Nicht-Muttersprachlern erfasst und in XML/TEI P5 nach DTA-Basisformat kodiert.
|
Insbesondere im Hinblick auf die §§ 86a StGB und 130 StGB wird festgestellt, dass die auf diesen Seiten abgebildeten Inhalte weder in irgendeiner Form propagandistischen Zwecken dienen, oder Werbung für verbotene Organisationen oder Vereinigungen darstellen, oder nationalsozialistische Verbrechen leugnen oder verharmlosen, noch zum Zwecke der Herabwürdigung der Menschenwürde gezeigt werden. Die auf diesen Seiten abgebildeten Inhalte (in Wort und Bild) dienen im Sinne des § 86 StGB Abs. 3 ausschließlich historischen, sozial- oder kulturwissenschaftlichen Forschungszwecken. Ihre Veröffentlichung erfolgt in der Absicht, Wissen zur Anregung der intellektuellen Selbstständigkeit und Verantwortungsbereitschaft des Staatsbürgers zu vermitteln und damit der Förderung seiner Mündigkeit zu dienen.
2007–2024 Deutsches Textarchiv, Berlin-Brandenburgische Akademie der Wissenschaften.
Kontakt: redaktion(at)deutschestextarchiv.de. |