Gerstner, Franz Joseph von: Handbuch der Mechanik. Bd. 3: Beschreibung und Berechnung grösserer Maschinenanlagen. Wien, 1834.Widerstände bei der Spiralpumpe. = 56,4 f . c
[Formel 1]
, und sein Moment für eine Umdrehung =56,4 f . c [Formel 2] 2 p . A, wenn nämlich die Fläche der Schaufeln mit f, die Geschwindigkeit des anströmenden Wassers mit c, die Anzahl der zu gleicher Zeit im Wasser eingetauchten Schaufeln mit n und die Geschwindigkeit des Wasserrades mit v bezeichnet, der Halbmesser A desselben aber eben so gross, als der Halbmesser der Windungen angenommen wird. Dieses Kraftmoment hat bei jeder Umdrehung das vom Horne geschöpfte Wasser p . A . p . a2 auf die Höhe H zu fördern, weil eben so viel, als vom Horne geschöpft wird, am obern Ende des Steigrohres auslaufen muss. Da dem Wasser bei seiner Bewegung in dem Schlangen- und Steigrohre die erfor- Hat das Steigrohr gleichen Durchmesser 2 x, wie die letzte Schlangenröhre, so ist Wir erhalten sonach das Lastmoment = 56,4 p . A . p . a2 (H + y + z) Widerstände bei der Spiralpumpe. = 56,4 f . c
[Formel 1]
, und sein Moment für eine Umdrehung =56,4 f . c [Formel 2] 2 π . A, wenn nämlich die Fläche der Schaufeln mit f, die Geschwindigkeit des anströmenden Wassers mit c, die Anzahl der zu gleicher Zeit im Wasser eingetauchten Schaufeln mit n und die Geschwindigkeit des Wasserrades mit v bezeichnet, der Halbmesser A desselben aber eben so gross, als der Halbmesser der Windungen angenommen wird. Dieses Kraftmoment hat bei jeder Umdrehung das vom Horne geschöpfte Wasser π . A . π . a2 auf die Höhe H zu fördern, weil eben so viel, als vom Horne geschöpft wird, am obern Ende des Steigrohres auslaufen muss. Da dem Wasser bei seiner Bewegung in dem Schlangen- und Steigrohre die erfor- Hat das Steigrohr gleichen Durchmesser 2 x, wie die letzte Schlangenröhre, so ist Wir erhalten sonach das Lastmoment = 56,4 π . A . π . a2 (H + y + z) <TEI> <text> <body> <div n="1"> <div n="2"> <div n="3"> <p><pb facs="#f0290" n="254"/><fw place="top" type="header"><hi rendition="#i">Widerstände bei der Spiralpumpe.</hi></fw><lb/> = 56,<hi rendition="#sub">4</hi> f . c <formula/>, und sein Moment für eine Umdrehung =<lb/> 56,<hi rendition="#sub">4</hi> f . c <formula/> 2 <hi rendition="#i">π</hi> . A, wenn nämlich die Fläche der Schaufeln mit f,<lb/> die Geschwindigkeit des anströmenden Wassers mit c, die Anzahl der zu gleicher Zeit<lb/> im Wasser eingetauchten Schaufeln mit n und die Geschwindigkeit des Wasserrades mit<lb/> v bezeichnet, der Halbmesser A desselben aber eben so gross, als der Halbmesser der<lb/> Windungen angenommen wird. Dieses Kraftmoment hat bei jeder Umdrehung das vom<lb/> Horne geschöpfte Wasser <hi rendition="#i">π</hi> . A . <hi rendition="#i">π</hi> . a<hi rendition="#sup">2</hi> auf die Höhe H zu fördern, weil eben so viel, als<lb/> vom Horne geschöpft wird, am obern Ende des Steigrohres auslaufen muss.</p><lb/> <p>Da dem Wasser bei seiner Bewegung in dem Schlangen- und Steigrohre die erfor-<lb/> derliche Geschwindigkeit ertheilt werden muss, bei dieser Bewegung aber Widerstände<lb/> in den Röhren eintreten, so hat das obige Kraftmoment das Wasser eigentlich auf die<lb/> Höhe H + y + z zu fördern, wo y die Widerstandshöhe im Schlangenrohr, und z jene im<lb/> Steigrohre bezeichnet. Die Geschwindigkeit des Wassers in der ersten Windung ist v, dem-<lb/> nach jene in der letzten Windung = <formula/>; bezeichnet l die Länge des Wasserbogens in<lb/> der ersten Windung, so ist die Widerstandshöhe für dieselbe, wenn auf die Krümmungen der<lb/> Röhren keine Rücksicht genommen wird, y' = <formula/>. Da wir<lb/> aber nach §. 142, II. Band in unserm Falle den letzten Theil dieses Ausdruckes vernach-<lb/> lässigen können, so folgt y' =<formula/>, und auf gleiche Art ist für das letzte<lb/> Rohr, dessen Länge, soweit es mit Wasser gefüllt ist, wir mit l' bezeichnen,<lb/> y'' = <formula/>. Da wir annehmen können, dass die Widerstandshöhen<lb/> in jeder Windung gleichförmig zunehmen, so ist die mittlere Widerstandshöhe<lb/> = ½ (y' + y'') und die ganze Höhe zur Ueberwältigung der Widerstände im Schlangen-<lb/> rohre y = <formula/>.</p><lb/> <p>Hat das Steigrohr gleichen Durchmesser 2 x, wie die letzte Schlangenröhre, so ist<lb/> die Geschwindigkeit des Wassers in demselben = <formula/>. Bezeichnet <hi rendition="#i">λ</hi> die Länge dieses Roh-<lb/> res, so weit es mit Wasser angefüllt ist, so ist die zur Bewirkung der Geschwindigkeit<lb/> und zur Ueberwältigung der Widerstände im Steigrohre erforderliche Höhe<lb/> z = <formula/>. Da beide Höhen y und z die Steighöhe H vermindern, und ihr<lb/> Werth von v<hi rendition="#sup">2</hi> abhängt, so folgt, dass bei einer und derselben Spiralpumpe das Wasser<lb/> während einem langsamern Gange höher als bei einem schnellern Gange steigen wird.</p><lb/> <p>Wir erhalten sonach das Lastmoment = 56,<hi rendition="#sub">4</hi> <hi rendition="#i">π</hi> . A . <hi rendition="#i">π</hi> . a<hi rendition="#sup">2</hi> (H + y + z)<lb/> = <hi rendition="#i">π</hi><hi rendition="#sup">2</hi> . A . a<hi rendition="#sup">2</hi> <formula/>. Setzt man das<lb/> Gewicht der ganzen Maschine, nämlich das Gewicht des Wasserrades sammt Radwelle, der<lb/> metallenen Windungen und des hierin enthaltenen Wassers, demnach den gesammten<lb/> Druck auf die Zapfenlager = G und den Halbmesser der Zapfen = e, so ist das Reibungs-<lb/></p> </div> </div> </div> </body> </text> </TEI> [254/0290]
Widerstände bei der Spiralpumpe.
= 56,4 f . c [FORMEL], und sein Moment für eine Umdrehung =
56,4 f . c [FORMEL] 2 π . A, wenn nämlich die Fläche der Schaufeln mit f,
die Geschwindigkeit des anströmenden Wassers mit c, die Anzahl der zu gleicher Zeit
im Wasser eingetauchten Schaufeln mit n und die Geschwindigkeit des Wasserrades mit
v bezeichnet, der Halbmesser A desselben aber eben so gross, als der Halbmesser der
Windungen angenommen wird. Dieses Kraftmoment hat bei jeder Umdrehung das vom
Horne geschöpfte Wasser π . A . π . a2 auf die Höhe H zu fördern, weil eben so viel, als
vom Horne geschöpft wird, am obern Ende des Steigrohres auslaufen muss.
Da dem Wasser bei seiner Bewegung in dem Schlangen- und Steigrohre die erfor-
derliche Geschwindigkeit ertheilt werden muss, bei dieser Bewegung aber Widerstände
in den Röhren eintreten, so hat das obige Kraftmoment das Wasser eigentlich auf die
Höhe H + y + z zu fördern, wo y die Widerstandshöhe im Schlangenrohr, und z jene im
Steigrohre bezeichnet. Die Geschwindigkeit des Wassers in der ersten Windung ist v, dem-
nach jene in der letzten Windung = [FORMEL]; bezeichnet l die Länge des Wasserbogens in
der ersten Windung, so ist die Widerstandshöhe für dieselbe, wenn auf die Krümmungen der
Röhren keine Rücksicht genommen wird, y' = [FORMEL]. Da wir
aber nach §. 142, II. Band in unserm Falle den letzten Theil dieses Ausdruckes vernach-
lässigen können, so folgt y' =[FORMEL], und auf gleiche Art ist für das letzte
Rohr, dessen Länge, soweit es mit Wasser gefüllt ist, wir mit l' bezeichnen,
y'' = [FORMEL]. Da wir annehmen können, dass die Widerstandshöhen
in jeder Windung gleichförmig zunehmen, so ist die mittlere Widerstandshöhe
= ½ (y' + y'') und die ganze Höhe zur Ueberwältigung der Widerstände im Schlangen-
rohre y = [FORMEL].
Hat das Steigrohr gleichen Durchmesser 2 x, wie die letzte Schlangenröhre, so ist
die Geschwindigkeit des Wassers in demselben = [FORMEL]. Bezeichnet λ die Länge dieses Roh-
res, so weit es mit Wasser angefüllt ist, so ist die zur Bewirkung der Geschwindigkeit
und zur Ueberwältigung der Widerstände im Steigrohre erforderliche Höhe
z = [FORMEL]. Da beide Höhen y und z die Steighöhe H vermindern, und ihr
Werth von v2 abhängt, so folgt, dass bei einer und derselben Spiralpumpe das Wasser
während einem langsamern Gange höher als bei einem schnellern Gange steigen wird.
Wir erhalten sonach das Lastmoment = 56,4 π . A . π . a2 (H + y + z)
= π2 . A . a2 [FORMEL]. Setzt man das
Gewicht der ganzen Maschine, nämlich das Gewicht des Wasserrades sammt Radwelle, der
metallenen Windungen und des hierin enthaltenen Wassers, demnach den gesammten
Druck auf die Zapfenlager = G und den Halbmesser der Zapfen = e, so ist das Reibungs-
Suche im WerkInformationen zum Werk
Download dieses Werks
XML (TEI P5) ·
HTML ·
Text Metadaten zum WerkTEI-Header · CMDI · Dublin Core Ansichten dieser Seite
Voyant Tools ?Language Resource Switchboard?FeedbackSie haben einen Fehler gefunden? Dann können Sie diesen über unsere Qualitätssicherungsplattform DTAQ melden. Kommentar zur DTA-AusgabeDieses Werk wurde gemäß den DTA-Transkriptionsrichtlinien im Double-Keying-Verfahren von Nicht-Muttersprachlern erfasst und in XML/TEI P5 nach DTA-Basisformat kodiert.
|
Insbesondere im Hinblick auf die §§ 86a StGB und 130 StGB wird festgestellt, dass die auf diesen Seiten abgebildeten Inhalte weder in irgendeiner Form propagandistischen Zwecken dienen, oder Werbung für verbotene Organisationen oder Vereinigungen darstellen, oder nationalsozialistische Verbrechen leugnen oder verharmlosen, noch zum Zwecke der Herabwürdigung der Menschenwürde gezeigt werden. Die auf diesen Seiten abgebildeten Inhalte (in Wort und Bild) dienen im Sinne des § 86 StGB Abs. 3 ausschließlich historischen, sozial- oder kulturwissenschaftlichen Forschungszwecken. Ihre Veröffentlichung erfolgt in der Absicht, Wissen zur Anregung der intellektuellen Selbstständigkeit und Verantwortungsbereitschaft des Staatsbürgers zu vermitteln und damit der Förderung seiner Mündigkeit zu dienen.
2007–2024 Deutsches Textarchiv, Berlin-Brandenburgische Akademie der Wissenschaften.
Kontakt: redaktion(at)deutschestextarchiv.de. |