Graßmann, Hermann: Die Wissenschaft der extensiven Grösse oder die Ausdehnungslehre, eine neue mathematische Disciplin. Bd. 1. Leipzig, 1844.§ 98 Mult. dieser Grössen mit Zahlengrössen. sobald diese nicht null ist, ein bestimmtes sei, ergiebt sich leicht,indem verschiedene Elementargrössen, d. h. solche, deren Abwei- chungen von denselben Elementen Verschiedenheiten darbieten, auch nachdem sie mit derselben Zahlengrösse, die nicht null ist, multiplicirt sind, verschiedene Abweichungen darbieten müssen, also verschieden bleiben. Und ebenso leicht ergiebt sich auch, dass, wenn wir gleichartige Elementargrössen solche nennen, welche aus derselben Elementargrösse durch Multiplikation mit Zahlengrössen hervorgegangen sind, der Quotient zweier gleichartiger Elementar- grössen, wenn nicht der Divisor null ist, eine bestimmte Zahlen- grösse liefert. Somit gelten alle Gesetze arithmetischer Multipli- kation und Division für die fragliche Verknüpfung. Die Verknü- pfung des Elementes r mit andern Elementen oder Elementargrös- sen, wie sie bei der oben eingeführten Bezeichnung der Abwei- chung eintritt, behalten wir dem folgenden Kapitel vor. § 98. Es erschien bisher die Elementargrösse im Allgemei- § 98 Mult. dieser Grössen mit Zahlengrössen. sobald diese nicht null ist, ein bestimmtes sei, ergiebt sich leicht,indem verschiedene Elementargrössen, d. h. solche, deren Abwei- chungen von denselben Elementen Verschiedenheiten darbieten, auch nachdem sie mit derselben Zahlengrösse, die nicht null ist, multiplicirt sind, verschiedene Abweichungen darbieten müssen, also verschieden bleiben. Und ebenso leicht ergiebt sich auch, dass, wenn wir gleichartige Elementargrössen solche nennen, welche aus derselben Elementargrösse durch Multiplikation mit Zahlengrössen hervorgegangen sind, der Quotient zweier gleichartiger Elementar- grössen, wenn nicht der Divisor null ist, eine bestimmte Zahlen- grösse liefert. Somit gelten alle Gesetze arithmetischer Multipli- kation und Division für die fragliche Verknüpfung. Die Verknü- pfung des Elementes ρ mit andern Elementen oder Elementargrös- sen, wie sie bei der oben eingeführten Bezeichnung der Abwei- chung eintritt, behalten wir dem folgenden Kapitel vor. § 98. Es erschien bisher die Elementargrösse im Allgemei- <TEI> <text> <body> <div n="1"> <div n="2"> <p><pb facs="#f0173" n="137"/><fw place="top" type="header">§ 98 Mult. dieser Grössen mit Zahlengrössen.</fw><lb/> sobald diese nicht null ist, ein bestimmtes sei, ergiebt sich leicht,<lb/> indem verschiedene Elementargrössen, d. h. solche, deren Abwei-<lb/> chungen von denselben Elementen Verschiedenheiten darbieten,<lb/> auch nachdem sie mit derselben Zahlengrösse, die nicht null ist,<lb/> multiplicirt sind, verschiedene Abweichungen darbieten müssen, also<lb/> verschieden bleiben. Und ebenso leicht ergiebt sich auch, dass,<lb/> wenn wir gleichartige Elementargrössen solche nennen, welche aus<lb/> derselben Elementargrösse durch Multiplikation mit Zahlengrössen<lb/> hervorgegangen sind, der Quotient zweier gleichartiger Elementar-<lb/> grössen, wenn nicht der Divisor null ist, eine bestimmte Zahlen-<lb/> grösse liefert. Somit gelten alle Gesetze arithmetischer Multipli-<lb/> kation und Division für die fragliche Verknüpfung. Die Verknü-<lb/> pfung des Elementes ρ mit andern Elementen oder Elementargrös-<lb/> sen, wie sie bei der oben eingeführten Bezeichnung der Abwei-<lb/> chung eintritt, behalten wir dem folgenden Kapitel vor.</p><lb/> <p>§ 98. Es erschien bisher die Elementargrösse im Allgemei-<lb/> nen als eine Vielfachensumme von Elementen, und wir müssen<lb/> uns die Aufgabe stellen, eine Elementargrösse, welche in dieser<lb/> Form gegeben ist, in möglichst einfacher Form darzustellen. Zu-<lb/> nächst machen wir den Versuch, sie in Einem Gliede, also als viel-<lb/> faches Element darzustellen. Es sei daher<lb/><hi rendition="#c"><hi rendition="#fr">a</hi>α + <hi rendition="#fr">b</hi>β + ..... = xσ</hi><lb/> gesetzt, wo σ ein Element, x sein Gewicht bezeichnet; da das Ge-<lb/> sammtgewicht auf beiden Seiten gleich sein muss, so erhalten wir<lb/> sogleich<lb/><hi rendition="#c">x = <hi rendition="#fr">a + b</hi> + .....</hi><lb/> und wir haben nur noch σ so zu bestimmen, dass die Gesammt-<lb/> Abweichung von irgend einem Elemente ρ auf beiden Seiten gleich<lb/> ist und erhalten<lb/><hi rendition="#c"><hi rendition="#fr">a</hi> [ρα] + <hi rendition="#fr">b</hi> [ρβ] + ..... = (<hi rendition="#fr">a + b</hi> + ....) [ρσ],</hi><lb/> d. h.<lb/><formula/> wodurch σ bestimmt ist, sobald <hi rendition="#fr">a + b</hi> + .... einen geltenden Werth<lb/> hat, d. h.<lb/><cit><quote>„Eine Elementargrösse, deren Gewicht nicht null ist, lässt<lb/> sich als ein mit gleichem Gewichte behaftetes Element dar-<lb/></quote></cit></p> </div> </div> </body> </text> </TEI> [137/0173]
§ 98 Mult. dieser Grössen mit Zahlengrössen.
sobald diese nicht null ist, ein bestimmtes sei, ergiebt sich leicht,
indem verschiedene Elementargrössen, d. h. solche, deren Abwei-
chungen von denselben Elementen Verschiedenheiten darbieten,
auch nachdem sie mit derselben Zahlengrösse, die nicht null ist,
multiplicirt sind, verschiedene Abweichungen darbieten müssen, also
verschieden bleiben. Und ebenso leicht ergiebt sich auch, dass,
wenn wir gleichartige Elementargrössen solche nennen, welche aus
derselben Elementargrösse durch Multiplikation mit Zahlengrössen
hervorgegangen sind, der Quotient zweier gleichartiger Elementar-
grössen, wenn nicht der Divisor null ist, eine bestimmte Zahlen-
grösse liefert. Somit gelten alle Gesetze arithmetischer Multipli-
kation und Division für die fragliche Verknüpfung. Die Verknü-
pfung des Elementes ρ mit andern Elementen oder Elementargrös-
sen, wie sie bei der oben eingeführten Bezeichnung der Abwei-
chung eintritt, behalten wir dem folgenden Kapitel vor.
§ 98. Es erschien bisher die Elementargrösse im Allgemei-
nen als eine Vielfachensumme von Elementen, und wir müssen
uns die Aufgabe stellen, eine Elementargrösse, welche in dieser
Form gegeben ist, in möglichst einfacher Form darzustellen. Zu-
nächst machen wir den Versuch, sie in Einem Gliede, also als viel-
faches Element darzustellen. Es sei daher
aα + bβ + ..... = xσ
gesetzt, wo σ ein Element, x sein Gewicht bezeichnet; da das Ge-
sammtgewicht auf beiden Seiten gleich sein muss, so erhalten wir
sogleich
x = a + b + .....
und wir haben nur noch σ so zu bestimmen, dass die Gesammt-
Abweichung von irgend einem Elemente ρ auf beiden Seiten gleich
ist und erhalten
a [ρα] + b [ρβ] + ..... = (a + b + ....) [ρσ],
d. h.
[FORMEL] wodurch σ bestimmt ist, sobald a + b + .... einen geltenden Werth
hat, d. h.
„Eine Elementargrösse, deren Gewicht nicht null ist, lässt
sich als ein mit gleichem Gewichte behaftetes Element dar-
Suche im WerkInformationen zum Werk
Download dieses Werks
XML (TEI P5) ·
HTML ·
Text Metadaten zum WerkTEI-Header · CMDI · Dublin Core Ansichten dieser Seite
Voyant Tools ?Language Resource Switchboard?FeedbackSie haben einen Fehler gefunden? Dann können Sie diesen über unsere Qualitätssicherungsplattform DTAQ melden. Kommentar zur DTA-AusgabeDieses Werk wurde gemäß den DTA-Transkriptionsrichtlinien im Double-Keying-Verfahren von Nicht-Muttersprachlern erfasst und in XML/TEI P5 nach DTA-Basisformat kodiert.
|
Insbesondere im Hinblick auf die §§ 86a StGB und 130 StGB wird festgestellt, dass die auf diesen Seiten abgebildeten Inhalte weder in irgendeiner Form propagandistischen Zwecken dienen, oder Werbung für verbotene Organisationen oder Vereinigungen darstellen, oder nationalsozialistische Verbrechen leugnen oder verharmlosen, noch zum Zwecke der Herabwürdigung der Menschenwürde gezeigt werden. Die auf diesen Seiten abgebildeten Inhalte (in Wort und Bild) dienen im Sinne des § 86 StGB Abs. 3 ausschließlich historischen, sozial- oder kulturwissenschaftlichen Forschungszwecken. Ihre Veröffentlichung erfolgt in der Absicht, Wissen zur Anregung der intellektuellen Selbstständigkeit und Verantwortungsbereitschaft des Staatsbürgers zu vermitteln und damit der Förderung seiner Mündigkeit zu dienen.
2007–2024 Deutsches Textarchiv, Berlin-Brandenburgische Akademie der Wissenschaften.
Kontakt: redaktion(at)deutschestextarchiv.de. |