Graßmann, Hermann: Die Wissenschaft der extensiven Grösse oder die Ausdehnungslehre, eine neue mathematische Disciplin. Bd. 1. Leipzig, 1844.Verwandtschaftsbeziehungen. § 171 während bei der gewöhnlichen analytischen Methode, sowohl dieEndformel als auch die Mittelglieder in sehr verwickelten Formen erscheinen. Aus dieser Auflösung fliesst sogleich der Satz: "Wenn sich eine Reihe von Ebenen aus 4 Ebenen, die einen Jede Kante der Krystallgestalt erscheint als Produkt der Flächen, "Wenn man 3 Kanten eines Krystalles, welche nicht in der- *) Nämlich es ist
[Formel 2] die Projektion von P . P1 auf A . B nach C u. s. w. und daraus folgt [Formel 3] nun stellen AB, BC, CA jene 3 Kanten dar, welche zwischen A, B, C liegen und durch die Ebene D begränzt werden, denn es seien c, a, b diese 3 Kanten, so werden die Flächenräume bc, ca, ab den 3 Flächenräumen A, B, C proportional sein (da diese die Hälften von jenen sind), und also AB, BC, CA den Produkten bc . ca, ca . ab, ab . bc, d. h. den Produkten abc . c, abc . a, abc . b oder den Grössen c, a, b proportional sein, und diese Grössen können also statt jener Produkte gesetzt werden. Verwandtschaftsbeziehungen. § 171 während bei der gewöhnlichen analytischen Methode, sowohl dieEndformel als auch die Mittelglieder in sehr verwickelten Formen erscheinen. Aus dieser Auflösung fliesst sogleich der Satz: „Wenn sich eine Reihe von Ebenen aus 4 Ebenen, die einen Jede Kante der Krystallgestalt erscheint als Produkt der Flächen, „Wenn man 3 Kanten eines Krystalles, welche nicht in der- *) Nämlich es ist
[Formel 2] die Projektion von P . P1 auf A . B nach C u. s. w. und daraus folgt [Formel 3] nun stellen AB, BC, CA jene 3 Kanten dar, welche zwischen A, B, C liegen und durch die Ebene D begränzt werden, denn es seien c, a, b diese 3 Kanten, so werden die Flächenräume bc, ca, ab den 3 Flächenräumen A, B, C proportional sein (da diese die Hälften von jenen sind), und also AB, BC, CA den Produkten bc . ca, ca . ab, ab . bc, d. h. den Produkten abc . c, abc . a, abc . b oder den Grössen c, a, b proportional sein, und diese Grössen können also statt jener Produkte gesetzt werden. <TEI> <text> <body> <div n="1"> <div n="2"> <p><pb facs="#f0300" n="264"/><fw place="top" type="header">Verwandtschaftsbeziehungen. § 171</fw><lb/> während bei der gewöhnlichen analytischen Methode, sowohl die<lb/> Endformel als auch die Mittelglieder in sehr verwickelten Formen<lb/> erscheinen. Aus dieser Auflösung fliesst sogleich der Satz:</p><lb/> <cit> <quote>„Wenn sich eine Reihe von Ebenen aus 4 Ebenen, die einen<lb/> Raum einschliessen, auf die angegebene Weise rational ablei-<lb/> ten lässt, so lässt sich auch dieselbe Reihe von Ebenen aus<lb/> jeden vier andern Ebenen dieser Reihe, welche einen Raum<lb/> einschliessen, gleichfalls rational ableiten.“</quote> </cit><lb/> <p>Jede Kante der Krystallgestalt erscheint als Produkt der Flächen,<lb/> welche sie bilden, und dadurch ergiebt sich die Lösung der Auf-<lb/> gabe: „Wenn die Zeiger zweier Flächen P, P<hi rendition="#sub">1</hi> in Bezug auf vier Ebe-<lb/> nen A, B, C, D, von denen die letzte die abschneidende ist, gege-<lb/> ben sind, dann ihre Kante als Vielfachensumme der von den Ebe-<lb/> nen A, B, C gebildeten und durch D begränzten Kanten zu finden.“<lb/> Man erhält, wenn A, B, C die durch D begränzten Flächenräume<lb/> darstellen, als die Zeiger dieser Kante die Ausdrücke<lb/><formula/> welche sich auf die durch die Produkte AB, BC, CA dargestellten<lb/> Kanten beziehen <note place="foot" n="*)">Nämlich es ist<lb/><formula/> die Projektion von P . P<hi rendition="#sub">1</hi> auf A . B nach C u. s. w. und daraus folgt<lb/><formula/> nun stellen AB, BC, CA jene 3 Kanten dar, welche zwischen A, B, C liegen und<lb/> durch die Ebene D begränzt werden, denn es seien c, a, b diese 3 Kanten, so<lb/> werden die Flächenräume bc, ca, ab den 3 Flächenräumen A, B, C proportional<lb/> sein (da diese die Hälften von jenen sind), und also AB, BC, CA den Produkten<lb/> bc . ca, ca . ab, ab . bc, d. h. den Produkten abc . c, abc . a, abc . b oder den Grössen<lb/> c, a, b proportional sein, und diese Grössen können also statt jener Produkte<lb/> gesetzt werden.</note>. Hieraus fliesst, da man beliebige 4 raumbe-<lb/> gränzende Krystallflächen als Fundamentalflächen annehmen kann,<lb/> der Satz:</p><lb/> <cit> <quote>„Wenn man 3 Kanten eines Krystalles, welche nicht in der-<lb/> selben Ebene liegen, ohne Aenderung ihrer Richtung an einen<lb/> gemeinschaftlichen Anfangspunkt legt, und als ihre Endpunkte<lb/></quote> </cit> </div> </div> </body> </text> </TEI> [264/0300]
Verwandtschaftsbeziehungen. § 171
während bei der gewöhnlichen analytischen Methode, sowohl die
Endformel als auch die Mittelglieder in sehr verwickelten Formen
erscheinen. Aus dieser Auflösung fliesst sogleich der Satz:
„Wenn sich eine Reihe von Ebenen aus 4 Ebenen, die einen
Raum einschliessen, auf die angegebene Weise rational ablei-
ten lässt, so lässt sich auch dieselbe Reihe von Ebenen aus
jeden vier andern Ebenen dieser Reihe, welche einen Raum
einschliessen, gleichfalls rational ableiten.“
Jede Kante der Krystallgestalt erscheint als Produkt der Flächen,
welche sie bilden, und dadurch ergiebt sich die Lösung der Auf-
gabe: „Wenn die Zeiger zweier Flächen P, P1 in Bezug auf vier Ebe-
nen A, B, C, D, von denen die letzte die abschneidende ist, gege-
ben sind, dann ihre Kante als Vielfachensumme der von den Ebe-
nen A, B, C gebildeten und durch D begränzten Kanten zu finden.“
Man erhält, wenn A, B, C die durch D begränzten Flächenräume
darstellen, als die Zeiger dieser Kante die Ausdrücke
[FORMEL] welche sich auf die durch die Produkte AB, BC, CA dargestellten
Kanten beziehen *). Hieraus fliesst, da man beliebige 4 raumbe-
gränzende Krystallflächen als Fundamentalflächen annehmen kann,
der Satz:
„Wenn man 3 Kanten eines Krystalles, welche nicht in der-
selben Ebene liegen, ohne Aenderung ihrer Richtung an einen
gemeinschaftlichen Anfangspunkt legt, und als ihre Endpunkte
*) Nämlich es ist
[FORMEL] die Projektion von P . P1 auf A . B nach C u. s. w. und daraus folgt
[FORMEL] nun stellen AB, BC, CA jene 3 Kanten dar, welche zwischen A, B, C liegen und
durch die Ebene D begränzt werden, denn es seien c, a, b diese 3 Kanten, so
werden die Flächenräume bc, ca, ab den 3 Flächenräumen A, B, C proportional
sein (da diese die Hälften von jenen sind), und also AB, BC, CA den Produkten
bc . ca, ca . ab, ab . bc, d. h. den Produkten abc . c, abc . a, abc . b oder den Grössen
c, a, b proportional sein, und diese Grössen können also statt jener Produkte
gesetzt werden.
Suche im WerkInformationen zum Werk
Download dieses Werks
XML (TEI P5) ·
HTML ·
Text Metadaten zum WerkTEI-Header · CMDI · Dublin Core Ansichten dieser Seite
Voyant Tools ?Language Resource Switchboard?FeedbackSie haben einen Fehler gefunden? Dann können Sie diesen über unsere Qualitätssicherungsplattform DTAQ melden. Kommentar zur DTA-AusgabeDieses Werk wurde gemäß den DTA-Transkriptionsrichtlinien im Double-Keying-Verfahren von Nicht-Muttersprachlern erfasst und in XML/TEI P5 nach DTA-Basisformat kodiert.
|
Insbesondere im Hinblick auf die §§ 86a StGB und 130 StGB wird festgestellt, dass die auf diesen Seiten abgebildeten Inhalte weder in irgendeiner Form propagandistischen Zwecken dienen, oder Werbung für verbotene Organisationen oder Vereinigungen darstellen, oder nationalsozialistische Verbrechen leugnen oder verharmlosen, noch zum Zwecke der Herabwürdigung der Menschenwürde gezeigt werden. Die auf diesen Seiten abgebildeten Inhalte (in Wort und Bild) dienen im Sinne des § 86 StGB Abs. 3 ausschließlich historischen, sozial- oder kulturwissenschaftlichen Forschungszwecken. Ihre Veröffentlichung erfolgt in der Absicht, Wissen zur Anregung der intellektuellen Selbstständigkeit und Verantwortungsbereitschaft des Staatsbürgers zu vermitteln und damit der Förderung seiner Mündigkeit zu dienen.
2007–2024 Deutsches Textarchiv, Berlin-Brandenburgische Akademie der Wissenschaften.
Kontakt: redaktion(at)deutschestextarchiv.de. |