Klein, Felix: Über Riemann's Theorie der Algebraischen Functionen und ihrer Integrale. Leipzig, 1882.Richtigkeit unserer Behauptung dann unmittelbar evident. Es genügt, ein Beispiel zu betrachten, wie es in den vorstehenden Figuren vorliegt. Die in Figur 17 auf der Ringfläche verlaufende Curve ist mit der anderen, welche rechter Hand gezeichnet ist, durch blosse Verzerrung zur Deckung zu bringen, sie ist also mit einer dreifachen Durchlaufung der Meridiancurve A (vergl. Fig. 15) und einer einfachen Durchlaufung der Breitencurve B aequivalent. -- Sei ferner . So oft dann unsere Curve über eine der p Handhaben verläuft, kann man ein Stück von ihr abtrennen, das sich durch blosse Verzerrung in eine ganzzahlige Verbindung der betreffenden Meridiancurve und der zugehörigen Breitencurve verwandeln lässt. Nach Absonderung aller solcher Bestandtheile bleibt eine geschlossene Curve übrig, die sich entweder unmittelbar in einen einzelnen Punct der Fläche zusammenziehen lässt und also jedenfalls keinen Beitrag zur elektrischen Strömung liefert, oder die eine oder mehrere Handhaben völlig umschliesst, wovon Figur 19 ein Beispiel aufweist: Fig. 19. Fig. 20. Die Figur 20 erläutert, wie man eine solche Curve durch Deformation verändern kann. Durch Fortsetzung des hierdurch angedeuteten Processes verwandelt sie sich in einen Curvenzug, der aus der inneren Randcurve der betreffenden Handhabe und einer zugehörigen Meridiancurve besteht, dessen Stücke aber beide zweimal in entgegengesetzter Richtung durchlaufen werden. Also auch eine solche Curve gibt keinen Beitrag zur Strömung. Man hätte dieses übrigens auch von Vorneherein aus der Bemerkung ersehen können, dass die jetzt betrachtete Curve, gleich einer solchen, die sich in einen Richtigkeit unserer Behauptung dann unmittelbar evident. Es genügt, ein Beispiel zu betrachten, wie es in den vorstehenden Figuren vorliegt. Die in Figur 17 auf der Ringfläche verlaufende Curve ist mit der anderen, welche rechter Hand gezeichnet ist, durch blosse Verzerrung zur Deckung zu bringen, sie ist also mit einer dreifachen Durchlaufung der Meridiancurve A (vergl. Fig. 15) und einer einfachen Durchlaufung der Breitencurve B aequivalent. — Sei ferner . So oft dann unsere Curve über eine der p Handhaben verläuft, kann man ein Stück von ihr abtrennen, das sich durch blosse Verzerrung in eine ganzzahlige Verbindung der betreffenden Meridiancurve und der zugehörigen Breitencurve verwandeln lässt. Nach Absonderung aller solcher Bestandtheile bleibt eine geschlossene Curve übrig, die sich entweder unmittelbar in einen einzelnen Punct der Fläche zusammenziehen lässt und also jedenfalls keinen Beitrag zur elektrischen Strömung liefert, oder die eine oder mehrere Handhaben völlig umschliesst, wovon Figur 19 ein Beispiel aufweist: Fig. 19. Fig. 20. Die Figur 20 erläutert, wie man eine solche Curve durch Deformation verändern kann. Durch Fortsetzung des hierdurch angedeuteten Processes verwandelt sie sich in einen Curvenzug, der aus der inneren Randcurve der betreffenden Handhabe und einer zugehörigen Meridiancurve besteht, dessen Stücke aber beide zweimal in entgegengesetzter Richtung durchlaufen werden. Also auch eine solche Curve gibt keinen Beitrag zur Strömung. Man hätte dieses übrigens auch von Vorneherein aus der Bemerkung ersehen können, dass die jetzt betrachtete Curve, gleich einer solchen, die sich in einen <TEI> <text> <body> <div n="1"> <div> <p><pb facs="#f0039" n="31"/> Richtigkeit unserer Behauptung dann unmittelbar evident. Es genügt, ein Beispiel zu betrachten, wie es in den vorstehenden Figuren vorliegt.</p> <p>Die in Figur 17 auf der Ringfläche verlaufende Curve ist mit der anderen, welche rechter Hand gezeichnet ist, durch blosse Verzerrung zur Deckung zu bringen, sie ist also mit einer dreifachen Durchlaufung der Meridiancurve <hi rendition="#i">A</hi> (vergl. Fig. 15) und einer einfachen Durchlaufung der Breitencurve <hi rendition="#i">B</hi> aequivalent. — Sei ferner <formula notation="TeX">p > 1</formula>. So oft dann unsere Curve über eine der <hi rendition="#i">p</hi> Handhaben verläuft, kann man ein Stück von ihr abtrennen, das sich durch blosse Verzerrung in eine ganzzahlige Verbindung der betreffenden Meridiancurve und der zugehörigen Breitencurve verwandeln lässt. Nach Absonderung aller solcher Bestandtheile bleibt eine geschlossene Curve übrig, die sich entweder unmittelbar in einen einzelnen Punct der Fläche zusammenziehen lässt und also jedenfalls keinen Beitrag zur elektrischen Strömung liefert, oder die eine oder mehrere Handhaben völlig umschliesst, wovon Figur 19 ein Beispiel aufweist:</p> <figure rendition="#c" facs="http://media.dwds.de/dta/images/klein_riemann_1882/figures/image19.png"> <head>Fig. 19.</head><lb/> </figure> <figure rendition="#c" facs="http://media.dwds.de/dta/images/klein_riemann_1882/figures/image20.png"> <head>Fig. 20.</head><lb/> </figure> <p>Die Figur 20 erläutert, wie man eine solche Curve durch Deformation verändern kann. Durch Fortsetzung des hierdurch angedeuteten Processes verwandelt sie sich in einen Curvenzug, der aus der inneren Randcurve der betreffenden Handhabe und einer zugehörigen Meridiancurve besteht, dessen Stücke aber beide zweimal in entgegengesetzter Richtung durchlaufen werden. Also auch eine solche Curve gibt keinen Beitrag zur Strömung. Man hätte dieses übrigens auch von Vorneherein aus der Bemerkung ersehen können, dass die jetzt betrachtete Curve, gleich einer solchen, die sich in einen </p> </div> </div> </body> </text> </TEI> [31/0039]
Richtigkeit unserer Behauptung dann unmittelbar evident. Es genügt, ein Beispiel zu betrachten, wie es in den vorstehenden Figuren vorliegt.
Die in Figur 17 auf der Ringfläche verlaufende Curve ist mit der anderen, welche rechter Hand gezeichnet ist, durch blosse Verzerrung zur Deckung zu bringen, sie ist also mit einer dreifachen Durchlaufung der Meridiancurve A (vergl. Fig. 15) und einer einfachen Durchlaufung der Breitencurve B aequivalent. — Sei ferner [FORMEL]. So oft dann unsere Curve über eine der p Handhaben verläuft, kann man ein Stück von ihr abtrennen, das sich durch blosse Verzerrung in eine ganzzahlige Verbindung der betreffenden Meridiancurve und der zugehörigen Breitencurve verwandeln lässt. Nach Absonderung aller solcher Bestandtheile bleibt eine geschlossene Curve übrig, die sich entweder unmittelbar in einen einzelnen Punct der Fläche zusammenziehen lässt und also jedenfalls keinen Beitrag zur elektrischen Strömung liefert, oder die eine oder mehrere Handhaben völlig umschliesst, wovon Figur 19 ein Beispiel aufweist:
[Abbildung Fig. 19.
]
[Abbildung Fig. 20.
]
Die Figur 20 erläutert, wie man eine solche Curve durch Deformation verändern kann. Durch Fortsetzung des hierdurch angedeuteten Processes verwandelt sie sich in einen Curvenzug, der aus der inneren Randcurve der betreffenden Handhabe und einer zugehörigen Meridiancurve besteht, dessen Stücke aber beide zweimal in entgegengesetzter Richtung durchlaufen werden. Also auch eine solche Curve gibt keinen Beitrag zur Strömung. Man hätte dieses übrigens auch von Vorneherein aus der Bemerkung ersehen können, dass die jetzt betrachtete Curve, gleich einer solchen, die sich in einen
Suche im WerkInformationen zum Werk
Download dieses Werks
XML (TEI P5) ·
HTML ·
Text Metadaten zum WerkTEI-Header · CMDI · Dublin Core Ansichten dieser Seite
Voyant Tools ?Language Resource Switchboard?FeedbackSie haben einen Fehler gefunden? Dann können Sie diesen über unsere Qualitätssicherungsplattform DTAQ melden. Kommentar zur DTA-AusgabeDieses Werk wurde im Rahmen des Moduls DTA-Erweiterungen (DTAE) digitalisiert. Weitere Informationen … gutenberg.org: Bereitstellung der Texttranskription und Auszeichnung in HTML.
(2012-11-06T13:54:31Z)
Bitte beachten Sie, dass die aktuelle Transkription (und Textauszeichnung) mittlerweile nicht mehr dem Stand zum Zeitpunkt der Übernahme aus gutenberg.org entsprechen muss.
gutenberg.org: Bereitstellung der Bilddigitalisate
(2012-11-06T13:54:31Z)
Frank Wiegand: Konvertierung von HTML nach XML/TEI gemäß DTA-Basisformat.
(2012-11-06T13:54:31Z)
Weitere Informationen:Anmerkungen zur Transkription:
|
Insbesondere im Hinblick auf die §§ 86a StGB und 130 StGB wird festgestellt, dass die auf diesen Seiten abgebildeten Inhalte weder in irgendeiner Form propagandistischen Zwecken dienen, oder Werbung für verbotene Organisationen oder Vereinigungen darstellen, oder nationalsozialistische Verbrechen leugnen oder verharmlosen, noch zum Zwecke der Herabwürdigung der Menschenwürde gezeigt werden. Die auf diesen Seiten abgebildeten Inhalte (in Wort und Bild) dienen im Sinne des § 86 StGB Abs. 3 ausschließlich historischen, sozial- oder kulturwissenschaftlichen Forschungszwecken. Ihre Veröffentlichung erfolgt in der Absicht, Wissen zur Anregung der intellektuellen Selbstständigkeit und Verantwortungsbereitschaft des Staatsbürgers zu vermitteln und damit der Förderung seiner Mündigkeit zu dienen.
2007–2025 Deutsches Textarchiv, Berlin-Brandenburgische Akademie der Wissenschaften.
Kontakt: redaktion(at)deutschestextarchiv.de. |