Lambert, Johann Heinrich: Cosmologische Briefe über die Einrichtung des Weltbaues. Augsburg, 1761.über die Einrichtung des Weltbaues. herunter gestiegen, oder sich von der Sonne wiederaufwärts entfernt hätte. Im ersten Fall hätte der- selbe die Bahn des Hauptplaneten auf der Oestlichen, im andern Fall auf der Westlichen Seite durchschnei- den müssen. Wie groß ist hiebey die Wahrscheinlich- keit, daß das Gegentheil niemals eingetroffen. Denn auf diese kömmt es an, wenn man hier schlechthin ei- nen Zufall setzen will. Es sind in allem zehen Satel- liten, und von diesen sollten sich wenigstens fünf von Osten gegen Westen um den Hauptplanet drehen, weil beyde Bewegungen als gleich möglich müssen an- gesehen werden. Ein Comet kann im Herauf- und Herabsteigen einem Planeten eben so wohl auf der ei- nen als auf der andern Seite zu nahe kommen, wenn wir annehmen wollen, daß die Laufbahn derselben so aufs Ungefehr gesetzt ist. Die Rechnung über die Wahrscheinlichkeit ist hier bald gemacht. Es ist eben so viel, als wenn zwischen Cajus und Titius zehenmal das Loos gezogen würde, welches an sich betrachtet ei- nem so leicht fallen könnte als dem andern, und man setzte, Cajus wäre alle zehenmal glücklich gewesen. Die Unwahrscheinlichkeit ist hiebey 1023.mal größer als die Wahrscheinlichkeit. Und eben so wäre es über 1000.mal wahrscheinlicher gewesen, daß von den Sa- telliten einige sich von Morgen gegen Abend bewegten, wenn ihre Bewegung ein bloßer Zufall gewesen wäre. Eine andere Betrachtung, welche diese Unwahrschein- lichkeit noch weit größer macht, giebt uns die geringe Neigung, so die Bahnen der Satelliten gegen die von den Hauptplaneten haben. Solle man hier anneh- men,
uͤber die Einrichtung des Weltbaues. herunter geſtiegen, oder ſich von der Sonne wiederaufwaͤrts entfernt haͤtte. Im erſten Fall haͤtte der- ſelbe die Bahn des Hauptplaneten auf der Oeſtlichen, im andern Fall auf der Weſtlichen Seite durchſchnei- den muͤſſen. Wie groß iſt hiebey die Wahrſcheinlich- keit, daß das Gegentheil niemals eingetroffen. Denn auf dieſe koͤmmt es an, wenn man hier ſchlechthin ei- nen Zufall ſetzen will. Es ſind in allem zehen Satel- liten, und von dieſen ſollten ſich wenigſtens fuͤnf von Oſten gegen Weſten um den Hauptplanet drehen, weil beyde Bewegungen als gleich moͤglich muͤſſen an- geſehen werden. Ein Comet kann im Herauf- und Herabſteigen einem Planeten eben ſo wohl auf der ei- nen als auf der andern Seite zu nahe kommen, wenn wir annehmen wollen, daß die Laufbahn derſelben ſo aufs Ungefehr geſetzt iſt. Die Rechnung uͤber die Wahrſcheinlichkeit iſt hier bald gemacht. Es iſt eben ſo viel, als wenn zwiſchen Cajus und Titius zehenmal das Loos gezogen wuͤrde, welches an ſich betrachtet ei- nem ſo leicht fallen koͤnnte als dem andern, und man ſetzte, Cajus waͤre alle zehenmal gluͤcklich geweſen. Die Unwahrſcheinlichkeit iſt hiebey 1023.mal groͤßer als die Wahrſcheinlichkeit. Und eben ſo waͤre es uͤber 1000.mal wahrſcheinlicher geweſen, daß von den Sa- telliten einige ſich von Morgen gegen Abend bewegten, wenn ihre Bewegung ein bloßer Zufall geweſen waͤre. Eine andere Betrachtung, welche dieſe Unwahrſchein- lichkeit noch weit groͤßer macht, giebt uns die geringe Neigung, ſo die Bahnen der Satelliten gegen die von den Hauptplaneten haben. Solle man hier anneh- men,
<TEI> <text> <body> <div n="1"> <div n="2"> <p><pb facs="#f0048" n="15"/><fw place="top" type="header"><hi rendition="#b">uͤber die Einrichtung des Weltbaues.</hi></fw><lb/> herunter geſtiegen, oder ſich von der Sonne wieder<lb/> aufwaͤrts entfernt haͤtte. Im erſten Fall haͤtte der-<lb/> ſelbe die Bahn des Hauptplaneten auf der Oeſtlichen,<lb/> im andern Fall auf der Weſtlichen Seite durchſchnei-<lb/> den muͤſſen. Wie groß iſt hiebey die Wahrſcheinlich-<lb/> keit, daß das Gegentheil niemals eingetroffen. Denn<lb/> auf dieſe koͤmmt es an, wenn man hier ſchlechthin ei-<lb/> nen Zufall ſetzen will. Es ſind in allem zehen Satel-<lb/> liten, und von dieſen ſollten ſich wenigſtens fuͤnf von<lb/> Oſten gegen Weſten um den Hauptplanet drehen,<lb/> weil beyde Bewegungen als gleich moͤglich muͤſſen an-<lb/> geſehen werden. Ein Comet kann im Herauf- und<lb/> Herabſteigen einem Planeten eben ſo wohl auf der ei-<lb/> nen als auf der andern Seite zu nahe kommen, wenn<lb/> wir annehmen wollen, daß die Laufbahn derſelben ſo<lb/> aufs Ungefehr geſetzt iſt. Die Rechnung uͤber die<lb/> Wahrſcheinlichkeit iſt hier bald gemacht. Es iſt eben<lb/> ſo viel, als wenn zwiſchen Cajus und Titius zehenmal<lb/> das Loos gezogen wuͤrde, welches an ſich betrachtet ei-<lb/> nem ſo leicht fallen koͤnnte als dem andern, und man<lb/> ſetzte, Cajus waͤre alle zehenmal gluͤcklich geweſen.<lb/> Die Unwahrſcheinlichkeit iſt hiebey 1023.mal groͤßer<lb/> als die Wahrſcheinlichkeit. Und eben ſo waͤre es uͤber<lb/> 1000.mal wahrſcheinlicher geweſen, daß von den Sa-<lb/> telliten einige ſich von Morgen gegen Abend bewegten,<lb/> wenn ihre Bewegung ein bloßer Zufall geweſen waͤre.<lb/> Eine andere Betrachtung, welche dieſe Unwahrſchein-<lb/> lichkeit noch weit groͤßer macht, giebt uns die geringe<lb/> Neigung, ſo die Bahnen der Satelliten gegen die von<lb/> den Hauptplaneten haben. Solle man hier anneh-<lb/> <fw place="bottom" type="catch">men,</fw><lb/></p> </div> </div> </body> </text> </TEI> [15/0048]
uͤber die Einrichtung des Weltbaues.
herunter geſtiegen, oder ſich von der Sonne wieder
aufwaͤrts entfernt haͤtte. Im erſten Fall haͤtte der-
ſelbe die Bahn des Hauptplaneten auf der Oeſtlichen,
im andern Fall auf der Weſtlichen Seite durchſchnei-
den muͤſſen. Wie groß iſt hiebey die Wahrſcheinlich-
keit, daß das Gegentheil niemals eingetroffen. Denn
auf dieſe koͤmmt es an, wenn man hier ſchlechthin ei-
nen Zufall ſetzen will. Es ſind in allem zehen Satel-
liten, und von dieſen ſollten ſich wenigſtens fuͤnf von
Oſten gegen Weſten um den Hauptplanet drehen,
weil beyde Bewegungen als gleich moͤglich muͤſſen an-
geſehen werden. Ein Comet kann im Herauf- und
Herabſteigen einem Planeten eben ſo wohl auf der ei-
nen als auf der andern Seite zu nahe kommen, wenn
wir annehmen wollen, daß die Laufbahn derſelben ſo
aufs Ungefehr geſetzt iſt. Die Rechnung uͤber die
Wahrſcheinlichkeit iſt hier bald gemacht. Es iſt eben
ſo viel, als wenn zwiſchen Cajus und Titius zehenmal
das Loos gezogen wuͤrde, welches an ſich betrachtet ei-
nem ſo leicht fallen koͤnnte als dem andern, und man
ſetzte, Cajus waͤre alle zehenmal gluͤcklich geweſen.
Die Unwahrſcheinlichkeit iſt hiebey 1023.mal groͤßer
als die Wahrſcheinlichkeit. Und eben ſo waͤre es uͤber
1000.mal wahrſcheinlicher geweſen, daß von den Sa-
telliten einige ſich von Morgen gegen Abend bewegten,
wenn ihre Bewegung ein bloßer Zufall geweſen waͤre.
Eine andere Betrachtung, welche dieſe Unwahrſchein-
lichkeit noch weit groͤßer macht, giebt uns die geringe
Neigung, ſo die Bahnen der Satelliten gegen die von
den Hauptplaneten haben. Solle man hier anneh-
men,
Suche im WerkInformationen zum Werk
Download dieses Werks
XML (TEI P5) ·
HTML ·
Text Metadaten zum WerkTEI-Header · CMDI · Dublin Core Ansichten dieser Seite
Voyant Tools ?Language Resource Switchboard?FeedbackSie haben einen Fehler gefunden? Dann können Sie diesen über unsere Qualitätssicherungsplattform DTAQ melden. Kommentar zur DTA-AusgabeDieses Werk wurde gemäß den DTA-Transkriptionsrichtlinien im Double-Keying-Verfahren von Muttersprachlern erfasst und in XML/TEI P5 nach DTA-Basisformat kodiert.
|
Insbesondere im Hinblick auf die §§ 86a StGB und 130 StGB wird festgestellt, dass die auf diesen Seiten abgebildeten Inhalte weder in irgendeiner Form propagandistischen Zwecken dienen, oder Werbung für verbotene Organisationen oder Vereinigungen darstellen, oder nationalsozialistische Verbrechen leugnen oder verharmlosen, noch zum Zwecke der Herabwürdigung der Menschenwürde gezeigt werden. Die auf diesen Seiten abgebildeten Inhalte (in Wort und Bild) dienen im Sinne des § 86 StGB Abs. 3 ausschließlich historischen, sozial- oder kulturwissenschaftlichen Forschungszwecken. Ihre Veröffentlichung erfolgt in der Absicht, Wissen zur Anregung der intellektuellen Selbstständigkeit und Verantwortungsbereitschaft des Staatsbürgers zu vermitteln und damit der Förderung seiner Mündigkeit zu dienen.
2007–2024 Deutsches Textarchiv, Berlin-Brandenburgische Akademie der Wissenschaften.
Kontakt: redaktion(at)deutschestextarchiv.de. |