Mach, Ernst: Die Mechanik in ihrer Entwicklung. Leipzig, 1883.Die weitere Verwendung der Principien u. s. w. nach den Coordinatenrichtungen, welche auf die Massen-einheit der Flüssigkeit wirken, seien Functionen der Coordinaten x, y, z dieser Masse. Ein Längenelement des Kanals heisse ds, dessen Projectionen auf die Axen seien dx, dy, dz. Die Kraftcomponenten, welche nach der Richtung des Kanals auf die Masseneinheit wirken, sind dann [Formel 1] . Die Gesammtkraft, welche das Massenelement [r]qds des Kanals, wobei q der Querschnitt, nach der Richtung von ds treibt, ist [Formel 2] Dieselbe muss durch den Zuwachs des Druckes beim Durchschreiten des Längenelementes im Gleichgewicht gehalten werden, und ist also q·dp gleichzusetzen. Wir erhalten demnach dp=[r](Xdx+Ydy+Zdz). Der Unterschied des Druckes (p) zwischen den Enden M und N ergibt sich, wenn man diesen Ausdruck von M bis N integrirt. Da aber dieser Unterschied gar nicht von der Form des Kanals, sondern nur von der Lage der Enden M und N abhängen soll, so muss [r](Xdx+Ydy+Zdz), oder bei constanter Dichte auch Xdx+Ydy+Zdz, ein vollständiges Differential sein. Hierzu ist bekanntlich nothwendig, dass [Formel 3] wobei U eine Function der Coordinaten vorstellt. Das Gleichgewicht einer Flüssigkeit ist also nach Clairaultüberhaupt nur möglich, wenn dieselbe von Kräften beherrscht wird, welche sich als die partiellen Ableitungen einer und derselben Function der Coordinaten darstellen lassen. 9. Die Newton'schen Schwerkräfte, und überhaupt alle Die weitere Verwendung der Principien u. s. w. nach den Coordinatenrichtungen, welche auf die Massen-einheit der Flüssigkeit wirken, seien Functionen der Coordinaten x, y, z dieser Masse. Ein Längenelement des Kanals heisse ds, dessen Projectionen auf die Axen seien dx, dy, dz. Die Kraftcomponenten, welche nach der Richtung des Kanals auf die Masseneinheit wirken, sind dann [Formel 1] . Die Gesammtkraft, welche das Massenelement [ρ]qds des Kanals, wobei q der Querschnitt, nach der Richtung von ds treibt, ist [Formel 2] Dieselbe muss durch den Zuwachs des Druckes beim Durchschreiten des Längenelementes im Gleichgewicht gehalten werden, und ist also q·dp gleichzusetzen. Wir erhalten demnach dp=[ρ](Xdx+Ydy+Zdz). Der Unterschied des Druckes (p) zwischen den Enden M und N ergibt sich, wenn man diesen Ausdruck von M bis N integrirt. Da aber dieser Unterschied gar nicht von der Form des Kanals, sondern nur von der Lage der Enden M und N abhängen soll, so muss [ρ](Xdx+Ydy+Zdz), oder bei constanter Dichte auch Xdx+Ydy+Zdz, ein vollständiges Differential sein. Hierzu ist bekanntlich nothwendig, dass [Formel 3] wobei U eine Function der Coordinaten vorstellt. Das Gleichgewicht einer Flüssigkeit ist also nach Clairaultüberhaupt nur möglich, wenn dieselbe von Kräften beherrscht wird, welche sich als die partiellen Ableitungen einer und derselben Function der Coordinaten darstellen lassen. 9. Die Newton’schen Schwerkräfte, und überhaupt alle <TEI> <text> <body> <div n="1"> <div n="2"> <p><pb facs="#f0385" n="373"/><fw place="top" type="header">Die weitere Verwendung der Principien u. s. w.</fw><lb/> nach den Coordinatenrichtungen, welche auf die Massen-<lb/> einheit der Flüssigkeit wirken, seien Functionen der<lb/> Coordinaten <hi rendition="#i">x, y, z</hi> dieser Masse. Ein Längenelement<lb/> des Kanals heisse <hi rendition="#g"><hi rendition="#i">ds</hi></hi>, dessen Projectionen auf die Axen<lb/> seien <hi rendition="#g"><hi rendition="#i">dx, dy, dz</hi></hi>. Die Kraftcomponenten, welche nach<lb/> der Richtung des Kanals auf die Masseneinheit wirken,<lb/> sind dann <formula/>. Die Gesammtkraft,<lb/> welche das Massenelement <hi rendition="#g"><supplied>ρ</supplied><hi rendition="#i">qds</hi></hi> des Kanals, wobei <hi rendition="#i">q</hi><lb/> der Querschnitt, nach der Richtung von <hi rendition="#g"><hi rendition="#i">ds</hi></hi> treibt, ist<lb/><formula/> Dieselbe muss durch den Zuwachs des Druckes beim<lb/> Durchschreiten des Längenelementes im Gleichgewicht<lb/> gehalten werden, und ist also <hi rendition="#g"><hi rendition="#i">q·dp</hi></hi> gleichzusetzen.<lb/> Wir erhalten demnach <hi rendition="#g"><hi rendition="#i">dp</hi>=<supplied>ρ</supplied>(<hi rendition="#i">Xdx+Ydy+Zdz</hi>)</hi>.<lb/> Der Unterschied des Druckes (<hi rendition="#i">p</hi>) zwischen den Enden<lb/><hi rendition="#i">M</hi> und <hi rendition="#i">N</hi> ergibt sich, wenn man diesen Ausdruck von<lb/><hi rendition="#i">M</hi> bis <hi rendition="#i">N</hi> integrirt. Da aber dieser Unterschied gar<lb/> nicht von der Form des Kanals, sondern nur von der<lb/> Lage der Enden <hi rendition="#i">M</hi> und <hi rendition="#i">N</hi> abhängen soll, so muss<lb/><hi rendition="#g"><supplied>ρ</supplied>(<hi rendition="#i">Xdx+Ydy+Zdz</hi>)</hi>, oder bei constanter Dichte<lb/> auch <hi rendition="#g"><hi rendition="#i">Xdx+Ydy+Zdz</hi></hi>, ein vollständiges Differential<lb/> sein. Hierzu ist bekanntlich nothwendig, dass<lb/><formula/> wobei <hi rendition="#i">U</hi> eine Function der Coordinaten vorstellt. <hi rendition="#g">Das<lb/> Gleichgewicht einer Flüssigkeit ist also nach<lb/> Clairaultüberhaupt nur möglich, wenn dieselbe<lb/> von Kräften beherrscht wird, welche sich als<lb/> die partiellen Ableitungen einer und derselben<lb/> Function der Coordinaten darstellen lassen.</hi></p><lb/> <p>9. Die Newton’schen Schwerkräfte, und überhaupt alle<lb/><hi rendition="#g">Centralkräfte</hi>, d. h. solche Kräfte, welche die Massen<lb/> nach den Richtungen ihrer Verbindungslinien ausüben,<lb/> und welche Functionen der Entfernungen dieser Massen<lb/></p> </div> </div> </body> </text> </TEI> [373/0385]
Die weitere Verwendung der Principien u. s. w.
nach den Coordinatenrichtungen, welche auf die Massen-
einheit der Flüssigkeit wirken, seien Functionen der
Coordinaten x, y, z dieser Masse. Ein Längenelement
des Kanals heisse ds, dessen Projectionen auf die Axen
seien dx, dy, dz. Die Kraftcomponenten, welche nach
der Richtung des Kanals auf die Masseneinheit wirken,
sind dann [FORMEL]. Die Gesammtkraft,
welche das Massenelement ρqds des Kanals, wobei q
der Querschnitt, nach der Richtung von ds treibt, ist
[FORMEL] Dieselbe muss durch den Zuwachs des Druckes beim
Durchschreiten des Längenelementes im Gleichgewicht
gehalten werden, und ist also q·dp gleichzusetzen.
Wir erhalten demnach dp=ρ(Xdx+Ydy+Zdz).
Der Unterschied des Druckes (p) zwischen den Enden
M und N ergibt sich, wenn man diesen Ausdruck von
M bis N integrirt. Da aber dieser Unterschied gar
nicht von der Form des Kanals, sondern nur von der
Lage der Enden M und N abhängen soll, so muss
ρ(Xdx+Ydy+Zdz), oder bei constanter Dichte
auch Xdx+Ydy+Zdz, ein vollständiges Differential
sein. Hierzu ist bekanntlich nothwendig, dass
[FORMEL] wobei U eine Function der Coordinaten vorstellt. Das
Gleichgewicht einer Flüssigkeit ist also nach
Clairaultüberhaupt nur möglich, wenn dieselbe
von Kräften beherrscht wird, welche sich als
die partiellen Ableitungen einer und derselben
Function der Coordinaten darstellen lassen.
9. Die Newton’schen Schwerkräfte, und überhaupt alle
Centralkräfte, d. h. solche Kräfte, welche die Massen
nach den Richtungen ihrer Verbindungslinien ausüben,
und welche Functionen der Entfernungen dieser Massen
Suche im WerkInformationen zum Werk
Download dieses Werks
XML (TEI P5) ·
HTML ·
Text Metadaten zum WerkTEI-Header · CMDI · Dublin Core Ansichten dieser Seite
Voyant Tools ?Language Resource Switchboard?FeedbackSie haben einen Fehler gefunden? Dann können Sie diesen über unsere Qualitätssicherungsplattform DTAQ melden. Kommentar zur DTA-AusgabeDieses Werk wurde gemäß den DTA-Transkriptionsrichtlinien im Double-Keying-Verfahren von Nicht-Muttersprachlern erfasst und in XML/TEI P5 nach DTA-Basisformat kodiert.
|
Insbesondere im Hinblick auf die §§ 86a StGB und 130 StGB wird festgestellt, dass die auf diesen Seiten abgebildeten Inhalte weder in irgendeiner Form propagandistischen Zwecken dienen, oder Werbung für verbotene Organisationen oder Vereinigungen darstellen, oder nationalsozialistische Verbrechen leugnen oder verharmlosen, noch zum Zwecke der Herabwürdigung der Menschenwürde gezeigt werden. Die auf diesen Seiten abgebildeten Inhalte (in Wort und Bild) dienen im Sinne des § 86 StGB Abs. 3 ausschließlich historischen, sozial- oder kulturwissenschaftlichen Forschungszwecken. Ihre Veröffentlichung erfolgt in der Absicht, Wissen zur Anregung der intellektuellen Selbstständigkeit und Verantwortungsbereitschaft des Staatsbürgers zu vermitteln und damit der Förderung seiner Mündigkeit zu dienen.
2007–2024 Deutsches Textarchiv, Berlin-Brandenburgische Akademie der Wissenschaften.
Kontakt: redaktion(at)deutschestextarchiv.de. |