Müller-Breslau, Heinrich: Die neueren Methoden der Festigkeitslehre und der Statik der Baukonstruktionen. Leipzig, 1886.Der von den Biegungsmomenten abhängige Theil der Belastungs- Wird nun das der Biegungslinie einbeschriebene Polygon, dessen Ecken Für die Vergrösserung, welche diese Einzellast w erfahren muss, *) Geht man zur Grenze über, indem man l durch dx ersetzt, so wird
[Formel 8] , und es folgt, wenn die Einzellast wm durch das Element zdx einer Belastungsfläche ersetzt wird, genau wie früher die Ordinate [Formel 9] . Der von den Biegungsmomenten abhängige Theil der Belastungs- Wird nun das der Biegungslinie einbeschriebene Polygon, dessen Ecken Für die Vergrösserung, welche diese Einzellast w erfahren muss, *) Geht man zur Grenze über, indem man λ durch dx ersetzt, so wird
[Formel 8] , und es folgt, wenn die Einzellast wm durch das Element zdx einer Belastungsfläche ersetzt wird, genau wie früher die Ordinate [Formel 9] . <TEI> <text> <body> <div n="1"> <div n="2"> <div n="3"> <pb facs="#f0120" n="108"/> <p>Der von den Biegungsmomenten abhängige Theil der Belastungs-<lb/> linie, um dessen Einfluss auf die Durchbiegungen es sich zunächst handeln<lb/> möge, besteht aus geraden Linien, und es ist somit die Belastungsfläche<lb/> für irgend eine Strecke λ<hi rendition="#sub"><hi rendition="#i">m</hi></hi> ein Trapez, dessen Inhalt mit <hi rendition="#i">T<hi rendition="#sub">m</hi></hi> bezeichnet<lb/> werden soll. Dieses Trapez ist bestimmt durch die Ordinaten<lb/><hi rendition="#c"><formula/> und <formula/>.</hi></p><lb/> <p>Wird nun das der Biegungslinie einbeschriebene Polygon, dessen Ecken<lb/> senkrecht unter den Knotenpunkten liegen, gesucht, so darf (nach einem<lb/> hier als bekannt vorausgesetzten Satze aus der Theorie der Biegungs-<lb/> momente, als welche ja die Durchbiegungen δ aufgefasst werden dürfen)<lb/> die Belastungsfläche durch eine Schaar von Einzellasten ersetzt werden,<lb/> welche in die Senkrechten durch die Knotenpunkte fallen. Die durch <hi rendition="#i">m</hi><lb/> gehende Einzellast ist hierbei<lb/><hi rendition="#c"><formula/>,</hi><lb/> wenn ξ<hi rendition="#sub"><hi rendition="#i">m</hi></hi> und ξ'<hi rendition="#sub"><hi rendition="#i">m</hi> + 1</hi> die Abstände der Schwerpunkte der Trapeze <hi rendition="#i">T<hi rendition="#sub">m</hi></hi> und<lb/><hi rendition="#i">T<hi rendition="#sub">m + 1</hi></hi> von den Senkrechten durch <hi rendition="#i">m</hi> — 1 und <hi rendition="#i">m</hi> + 1 bedeuten. Das<lb/> statische Moment des Trapezes (welches man sich in zwei Dreiecke zer-<lb/> legt denke) ist<lb/><hi rendition="#c"><formula/></hi> und ebenso folgt<lb/><hi rendition="#c"><formula/>,</hi><lb/> weshalb entsteht:<lb/><hi rendition="#c"><formula/>.</hi></p><lb/> <p>Für die Vergrösserung, welche diese Einzellast <hi rendition="#i">w</hi> erfahren muss,<lb/> wenn der Einfluss der Aenderungen Δ<hi rendition="#i">s</hi> der Strecken <hi rendition="#i">s</hi> berücksichtigt<lb/> werden soll, ergiebt sich aus der Fachwerkstheorie der Werth<lb/><hi rendition="#c"><formula/> [nach § 5] <note place="foot" n="*)">Geht man zur Grenze über, indem man λ durch <hi rendition="#i">dx</hi> ersetzt, so wird<lb/><formula/>, und es folgt, wenn die<lb/> Einzellast <hi rendition="#i">w<hi rendition="#sub">m</hi></hi> durch das Element <hi rendition="#i">zdx</hi> einer Belastungsfläche ersetzt wird,<lb/> genau wie früher die Ordinate <formula/>.</note></hi><lb/> und es folgt, wenn (für den Fall <hi rendition="#i">t</hi> = 0):<lb/></p> </div> </div> </div> </body> </text> </TEI> [108/0120]
Der von den Biegungsmomenten abhängige Theil der Belastungs-
linie, um dessen Einfluss auf die Durchbiegungen es sich zunächst handeln
möge, besteht aus geraden Linien, und es ist somit die Belastungsfläche
für irgend eine Strecke λm ein Trapez, dessen Inhalt mit Tm bezeichnet
werden soll. Dieses Trapez ist bestimmt durch die Ordinaten
[FORMEL] und [FORMEL].
Wird nun das der Biegungslinie einbeschriebene Polygon, dessen Ecken
senkrecht unter den Knotenpunkten liegen, gesucht, so darf (nach einem
hier als bekannt vorausgesetzten Satze aus der Theorie der Biegungs-
momente, als welche ja die Durchbiegungen δ aufgefasst werden dürfen)
die Belastungsfläche durch eine Schaar von Einzellasten ersetzt werden,
welche in die Senkrechten durch die Knotenpunkte fallen. Die durch m
gehende Einzellast ist hierbei
[FORMEL],
wenn ξm und ξ'm + 1 die Abstände der Schwerpunkte der Trapeze Tm und
Tm + 1 von den Senkrechten durch m — 1 und m + 1 bedeuten. Das
statische Moment des Trapezes (welches man sich in zwei Dreiecke zer-
legt denke) ist
[FORMEL] und ebenso folgt
[FORMEL],
weshalb entsteht:
[FORMEL].
Für die Vergrösserung, welche diese Einzellast w erfahren muss,
wenn der Einfluss der Aenderungen Δs der Strecken s berücksichtigt
werden soll, ergiebt sich aus der Fachwerkstheorie der Werth
[FORMEL] [nach § 5] *)
und es folgt, wenn (für den Fall t = 0):
*) Geht man zur Grenze über, indem man λ durch dx ersetzt, so wird
[FORMEL], und es folgt, wenn die
Einzellast wm durch das Element zdx einer Belastungsfläche ersetzt wird,
genau wie früher die Ordinate [FORMEL].
Suche im WerkInformationen zum Werk
Download dieses Werks
XML (TEI P5) ·
HTML ·
Text Metadaten zum WerkTEI-Header · CMDI · Dublin Core Ansichten dieser Seite
Voyant Tools ?Language Resource Switchboard?FeedbackSie haben einen Fehler gefunden? Dann können Sie diesen über unsere Qualitätssicherungsplattform DTAQ melden. Kommentar zur DTA-AusgabeDieses Werk wurde gemäß den DTA-Transkriptionsrichtlinien im Double-Keying-Verfahren von Nicht-Muttersprachlern erfasst und in XML/TEI P5 nach DTA-Basisformat kodiert.
|
Insbesondere im Hinblick auf die §§ 86a StGB und 130 StGB wird festgestellt, dass die auf diesen Seiten abgebildeten Inhalte weder in irgendeiner Form propagandistischen Zwecken dienen, oder Werbung für verbotene Organisationen oder Vereinigungen darstellen, oder nationalsozialistische Verbrechen leugnen oder verharmlosen, noch zum Zwecke der Herabwürdigung der Menschenwürde gezeigt werden. Die auf diesen Seiten abgebildeten Inhalte (in Wort und Bild) dienen im Sinne des § 86 StGB Abs. 3 ausschließlich historischen, sozial- oder kulturwissenschaftlichen Forschungszwecken. Ihre Veröffentlichung erfolgt in der Absicht, Wissen zur Anregung der intellektuellen Selbstständigkeit und Verantwortungsbereitschaft des Staatsbürgers zu vermitteln und damit der Förderung seiner Mündigkeit zu dienen.
2007–2024 Deutsches Textarchiv, Berlin-Brandenburgische Akademie der Wissenschaften.
Kontakt: redaktion(at)deutschestextarchiv.de. |