Anmelden (DTAQ) DWDS     dlexDB     CLARIN-D

Quenstedt, Friedrich August: Handbuch der Mineralogie. Tübingen, 1855.

Bild:
<< vorherige Seite
Rechnung: Zonenpunktformel.

Weil mm1nn1 rationale Größen, so müssen auch die Coordinaten der
Zonenpunkte rationale Theile der Axen sein.

[Abbildung]

Beispiel. Suchen wir beim Feldspath im hintern rechten Qua-
dranten den Zonenpunkt o/u = p, so ist
[Formel 1] und [Formel 2] , also
m = 1, n = 2, m1 = 3, n1 = -- 4, folglich

[Formel 3] .

Besonderer Fall. Gienge [Formel 4] der Axe b parallel, so wäre
n1 = 0, also [Formel 5] .


Rechnung: Zonenpunktformel.

Weil μμ1νν1 rationale Größen, ſo müſſen auch die Coordinaten der
Zonenpunkte rationale Theile der Axen ſein.

[Abbildung]

Beiſpiel. Suchen wir beim Feldſpath im hintern rechten Qua-
dranten den Zonenpunkt o/u = p, ſo iſt
[Formel 1] und [Formel 2] , alſo
μ = 1, ν = 2, μ1 = 3, ν1 = — 4, folglich

[Formel 3] .

Beſonderer Fall. Gienge [Formel 4] der Axe b parallel, ſo wäre
ν1 = 0, alſo [Formel 5] .


<TEI>
  <text>
    <body>
      <div n="1">
        <div n="2">
          <pb facs="#f0054" n="42"/>
          <fw place="top" type="header">Rechnung: Zonenpunktformel.</fw><lb/>
          <p>Weil &#x03BC;&#x03BC;<hi rendition="#sub">1</hi>&#x03BD;&#x03BD;<hi rendition="#sub">1</hi> rationale Größen, &#x017F;o mü&#x017F;&#x017F;en auch die Coordinaten der<lb/>
Zonenpunkte rationale Theile der Axen &#x017F;ein.</p><lb/>
          <figure/>
          <p><hi rendition="#g">Bei&#x017F;piel</hi>. Suchen wir beim Feld&#x017F;path im hintern rechten Qua-<lb/>
dranten den Zonenpunkt <hi rendition="#aq">o/u = p</hi>, &#x017F;o i&#x017F;t<lb/><hi rendition="#et"><formula/> und <formula/>, al&#x017F;o<lb/>
&#x03BC; = 1, &#x03BD; = 2, &#x03BC;<hi rendition="#sub">1</hi> = 3, &#x03BD;<hi rendition="#sub">1</hi> = &#x2014; 4, folglich</hi><lb/><formula/>.</p><lb/>
          <p><hi rendition="#g">Be&#x017F;onderer Fall</hi>. Gienge <formula/> der Axe <hi rendition="#aq">b</hi> parallel, &#x017F;o wäre<lb/>
&#x03BD;<hi rendition="#sub">1</hi> = 0, al&#x017F;o <formula/>.</p><lb/>
        </div>
      </div>
    </body>
  </text>
</TEI>
[42/0054] Rechnung: Zonenpunktformel. Weil μμ1νν1 rationale Größen, ſo müſſen auch die Coordinaten der Zonenpunkte rationale Theile der Axen ſein. [Abbildung] Beiſpiel. Suchen wir beim Feldſpath im hintern rechten Qua- dranten den Zonenpunkt o/u = p, ſo iſt [FORMEL] und [FORMEL], alſo μ = 1, ν = 2, μ1 = 3, ν1 = — 4, folglich [FORMEL]. Beſonderer Fall. Gienge [FORMEL] der Axe b parallel, ſo wäre ν1 = 0, alſo [FORMEL].

Suche im Werk

Hilfe

Informationen zum Werk

Download dieses Werks

XML (TEI P5) · HTML · Text
TCF (text annotation layer)
XML (TEI P5 inkl. att.linguistic)

Metadaten zum Werk

TEI-Header · CMDI · Dublin Core

Ansichten dieser Seite

Voyant Tools ?

Language Resource Switchboard?

Feedback

Sie haben einen Fehler gefunden? Dann können Sie diesen über unsere Qualitätssicherungsplattform DTAQ melden.

Kommentar zur DTA-Ausgabe

Dieses Werk wurde gemäß den DTA-Transkriptionsrichtlinien im Double-Keying-Verfahren von Nicht-Muttersprachlern erfasst und in XML/TEI P5 nach DTA-Basisformat kodiert.




Ansicht auf Standard zurückstellen

URL zu diesem Werk: https://www.deutschestextarchiv.de/quenstedt_mineralogie_1854
URL zu dieser Seite: https://www.deutschestextarchiv.de/quenstedt_mineralogie_1854/54
Zitationshilfe: Quenstedt, Friedrich August: Handbuch der Mineralogie. Tübingen, 1855, S. 42. In: Deutsches Textarchiv <https://www.deutschestextarchiv.de/quenstedt_mineralogie_1854/54>, abgerufen am 21.11.2024.