Schröder, Ernst: Vorlesungen über die Algebra der Logik. Bd. 1. Leipzig, 1890.Zur Gruppentheorie des identischen Kalkuls. 0 = x y z (phn111 + psn111 + khn111) (phn110 + psn110 + khn110) (phn101 + psn101 + khn101) (phn100 + psn100 + khn100) · · (phn011 + psn011 + khn011) (phn010 + psn010 + khn010) (phn001 + psn001 + khn001) (phn000 + psn000 + khn000) + + x y z1 (phn111 + psn111 + kh111) (phn110 + psn110 + kh110) (phn101 + psn101 + kh101) (phn100 + psn100 + kh100) · · (phn011 + psn011 + kh011) (phn010 + psn010 + kh010) (phn001 + psn001 + kh001) (phn000 + psn000 + kh000) + + x y1 z (phn111 + ps111 + khn111) (phn110 + ps110 + khn110) (phn101 + ps101 + khn101) (phn100 + ps100 + khn100) · · (phn011 + ps011 + khn011) (phn010 + ps010 + khn010) (phn001 + ps001 + khn001) (phn000 + ps000 + khn000) + + x y1 z1 (phn111 + ps111 + kh111) (phn110 + ps110 + kh110) (phn101 + ps101 + kh101) (phn100 + ps100 + kh100) · · (phn011 + ps011 + kh011) (phn010 + ps010 + kh010) (phn001 + ps001 + kh001) (phn000 + ps000 + kh000) + + x1 y z (ph111 + psn111 + khn111) (ph110 + psn110 + khn110) (ph101 + psn101 + khn101) (ph100 + psn100 + khn100) · · (ph011 + psn011 + khn011) (ph010 + psn010 + khn010) (ph001 + psn001 + khn001) (ph000 + psn000 + khn000) + + x1 y z1 (ph111 + psn111 + kh111) (ph110 + psn110 + kh110) (ph101 + psn101 + kh101) (ph100 + psn100 + kh100) · · (ph011 + psn011 + kh011) (ph010 + psn010 + kh010) (ph001 + psn001 + kh001) (ph000 + psn000 + kh000) + + x1 y1 z (ph111 + ps111 + khn111) (ph110 + ps110 + khn110) (ph101 + ps101 + khn101) (ph100 + ps100 + khn100) · · (ph011 + ps011 + khn011) (ph010 + ps010 + khn010) (ph001 + ps001 + khn001) (ph000 + ps000 + khn000) + + x1 y1 z1 (ph111 + ps111 + kh111) (ph110 + ps110 + kh110) (ph101 + ps101 + kh101) (ph100 + ps100 + kh100) · · (ph011 + ps011 + kh011) (ph010 + ps010 + kh010) (ph001 + ps001 + kh001) (ph000 + ps000 + kh000). Sei nun insbesondere: Zur Gruppentheorie des identischen Kalkuls. 0 = x y z (φ̄111 + ψ̄111 + χ̄111) (φ̄110 + ψ̄110 + χ̄110) (φ̄101 + ψ̄101 + χ̄101) (φ̄100 + ψ̄100 + χ̄100) · · (φ̄011 + ψ̄011 + χ̄011) (φ̄010 + ψ̄010 + χ̄010) (φ̄001 + ψ̄001 + χ̄001) (φ̄000 + ψ̄000 + χ̄000) + + x y z1 (φ̄111 + ψ̄111 + χ111) (φ̄110 + ψ̄110 + χ110) (φ̄101 + ψ̄101 + χ101) (φ̄100 + ψ̄100 + χ100) · · (φ̄011 + ψ̄011 + χ011) (φ̄010 + ψ̄010 + χ010) (φ̄001 + ψ̄001 + χ001) (φ̄000 + ψ̄000 + χ000) + + x y1 z (φ̄111 + ψ111 + χ̄111) (φ̄110 + ψ110 + χ̄110) (φ̄101 + ψ101 + χ̄101) (φ̄100 + ψ100 + χ̄100) · · (φ̄011 + ψ011 + χ̄011) (φ̄010 + ψ010 + χ̄010) (φ̄001 + ψ001 + χ̄001) (φ̄000 + ψ000 + χ̄000) + + x y1 z1 (φ̄111 + ψ111 + χ111) (φ̄110 + ψ110 + χ110) (φ̄101 + ψ101 + χ101) (φ̄100 + ψ100 + χ100) · · (φ̄011 + ψ011 + χ011) (φ̄010 + ψ010 + χ010) (φ̄001 + ψ001 + χ001) (φ̄000 + ψ000 + χ000) + + x1 y z (φ111 + ψ̄111 + χ̄111) (φ110 + ψ̄110 + χ̄110) (φ101 + ψ̄101 + χ̄101) (φ100 + ψ̄100 + χ̄100) · · (φ011 + ψ̄011 + χ̄011) (φ010 + ψ̄010 + χ̄010) (φ001 + ψ̄001 + χ̄001) (φ000 + ψ̄000 + χ̄000) + + x1 y z1 (φ111 + ψ̄111 + χ111) (φ110 + ψ̄110 + χ110) (φ101 + ψ̄101 + χ101) (φ100 + ψ̄100 + χ100) · · (φ011 + ψ̄011 + χ011) (φ010 + ψ̄010 + χ010) (φ001 + ψ̄001 + χ001) (φ000 + ψ̄000 + χ000) + + x1 y1 z (φ111 + ψ111 + χ̄111) (φ110 + ψ110 + χ̄110) (φ101 + ψ101 + χ̄101) (φ100 + ψ100 + χ̄100) · · (φ011 + ψ011 + χ̄011) (φ010 + ψ010 + χ̄010) (φ001 + ψ001 + χ̄001) (φ000 + ψ000 + χ̄000) + + x1 y1 z1 (φ111 + ψ111 + χ111) (φ110 + ψ110 + χ110) (φ101 + ψ101 + χ101) (φ100 + ψ100 + χ100) · · (φ011 + ψ011 + χ011) (φ010 + ψ010 + χ010) (φ001 + ψ001 + χ001) (φ000 + ψ000 + χ000). Sei nun insbesondere: <TEI> <text> <body> <div n="1"> <div n="2"> <p> <pb facs="#f0717" n="697"/> <fw place="top" type="header">Zur Gruppentheorie des identischen Kalkuls.</fw><lb/> <list> <item>0 = <hi rendition="#i">x y z</hi> (<hi rendition="#i">φ̄</hi><hi rendition="#sub">111</hi> + <hi rendition="#i">ψ̄</hi><hi rendition="#sub">111</hi> + <hi rendition="#i">χ̄</hi><hi rendition="#sub">111</hi>) (<hi rendition="#i">φ̄</hi><hi rendition="#sub">110</hi> + <hi rendition="#i">ψ̄</hi><hi rendition="#sub">110</hi> + <hi rendition="#i">χ̄</hi><hi rendition="#sub">110</hi>) (<hi rendition="#i">φ̄</hi><hi rendition="#sub">101</hi> + <hi rendition="#i">ψ̄</hi><hi rendition="#sub">101</hi> + <hi rendition="#i">χ̄</hi><hi rendition="#sub">101</hi>) (<hi rendition="#i">φ̄</hi><hi rendition="#sub">100</hi> + <hi rendition="#i">ψ̄</hi><hi rendition="#sub">100</hi> + <hi rendition="#i">χ̄</hi><hi rendition="#sub">100</hi>) ·<lb/><hi rendition="#et">· (<hi rendition="#i">φ̄</hi><hi rendition="#sub">011</hi> + <hi rendition="#i">ψ̄</hi><hi rendition="#sub">011</hi> + <hi rendition="#i">χ̄</hi><hi rendition="#sub">011</hi>) (<hi rendition="#i">φ̄</hi><hi rendition="#sub">010</hi> + <hi rendition="#i">ψ̄</hi><hi rendition="#sub">010</hi> + <hi rendition="#i">χ̄</hi><hi rendition="#sub">010</hi>) (<hi rendition="#i">φ̄</hi><hi rendition="#sub">001</hi> + <hi rendition="#i">ψ̄</hi><hi rendition="#sub">001</hi> + <hi rendition="#i">χ̄</hi><hi rendition="#sub">001</hi>) (<hi rendition="#i">φ̄</hi><hi rendition="#sub">000</hi> + <hi rendition="#i">ψ̄</hi><hi rendition="#sub">000</hi> + <hi rendition="#i">χ̄</hi><hi rendition="#sub">000</hi>) +</hi><lb/> + <hi rendition="#i">x y z</hi><hi rendition="#sub">1</hi> (<hi rendition="#i">φ̄</hi><hi rendition="#sub">111</hi> + <hi rendition="#i">ψ̄</hi><hi rendition="#sub">111</hi> + <hi rendition="#i">χ</hi><hi rendition="#sub">111</hi>) (<hi rendition="#i">φ̄</hi><hi rendition="#sub">110</hi> + <hi rendition="#i">ψ̄</hi><hi rendition="#sub">110</hi> + <hi rendition="#i">χ</hi><hi rendition="#sub">110</hi>) (<hi rendition="#i">φ̄</hi><hi rendition="#sub">101</hi> + <hi rendition="#i">ψ̄</hi><hi rendition="#sub">101</hi> + <hi rendition="#i">χ</hi><hi rendition="#sub">101</hi>) (<hi rendition="#i">φ̄</hi><hi rendition="#sub">100</hi> + <hi rendition="#i">ψ̄</hi><hi rendition="#sub">100</hi> + <hi rendition="#i">χ</hi><hi rendition="#sub">100</hi>) ·<lb/><hi rendition="#et">· (<hi rendition="#i">φ̄</hi><hi rendition="#sub">011</hi> + <hi rendition="#i">ψ̄</hi><hi rendition="#sub">011</hi> + <hi rendition="#i">χ</hi><hi rendition="#sub">011</hi>) (<hi rendition="#i">φ̄</hi><hi rendition="#sub">010</hi> + <hi rendition="#i">ψ̄</hi><hi rendition="#sub">010</hi> + <hi rendition="#i">χ</hi><hi rendition="#sub">010</hi>) (<hi rendition="#i">φ̄</hi><hi rendition="#sub">001</hi> + <hi rendition="#i">ψ̄</hi><hi rendition="#sub">001</hi> + <hi rendition="#i">χ</hi><hi rendition="#sub">001</hi>) (<hi rendition="#i">φ̄</hi><hi rendition="#sub">000</hi> + <hi rendition="#i">ψ̄</hi><hi rendition="#sub">000</hi> + <hi rendition="#i">χ</hi><hi rendition="#sub">000</hi>) +</hi><lb/> + <hi rendition="#i">x y</hi><hi rendition="#sub">1</hi> <hi rendition="#i">z</hi> (<hi rendition="#i">φ̄</hi><hi rendition="#sub">111</hi> + <hi rendition="#i">ψ</hi><hi rendition="#sub">111</hi> + <hi rendition="#i">χ̄</hi><hi rendition="#sub">111</hi>) (<hi rendition="#i">φ̄</hi><hi rendition="#sub">110</hi> + <hi rendition="#i">ψ</hi><hi rendition="#sub">110</hi> + <hi rendition="#i">χ̄</hi><hi rendition="#sub">110</hi>) (<hi rendition="#i">φ̄</hi><hi rendition="#sub">101</hi> + <hi rendition="#i">ψ</hi><hi rendition="#sub">101</hi> + <hi rendition="#i">χ̄</hi><hi rendition="#sub">101</hi>) (<hi rendition="#i">φ̄</hi><hi rendition="#sub">100</hi> + <hi rendition="#i">ψ</hi><hi rendition="#sub">100</hi> + <hi rendition="#i">χ̄</hi><hi rendition="#sub">100</hi>) ·<lb/><hi rendition="#et">· (<hi rendition="#i">φ̄</hi><hi rendition="#sub">011</hi> + <hi rendition="#i">ψ</hi><hi rendition="#sub">011</hi> + <hi rendition="#i">χ̄</hi><hi rendition="#sub">011</hi>) (<hi rendition="#i">φ̄</hi><hi rendition="#sub">010</hi> + <hi rendition="#i">ψ</hi><hi rendition="#sub">010</hi> + <hi rendition="#i">χ̄</hi><hi rendition="#sub">010</hi>) (<hi rendition="#i">φ̄</hi><hi rendition="#sub">001</hi> + <hi rendition="#i">ψ</hi><hi rendition="#sub">001</hi> + <hi rendition="#i">χ̄</hi><hi rendition="#sub">001</hi>) (<hi rendition="#i">φ̄</hi><hi rendition="#sub">000</hi> + <hi rendition="#i">ψ</hi><hi rendition="#sub">000</hi> + <hi rendition="#i">χ̄</hi><hi rendition="#sub">000</hi>) +</hi><lb/> + <hi rendition="#i">x y</hi><hi rendition="#sub">1</hi> <hi rendition="#i">z</hi><hi rendition="#sub">1</hi> (<hi rendition="#i">φ̄</hi><hi rendition="#sub">111</hi> + <hi rendition="#i">ψ</hi><hi rendition="#sub">111</hi> + <hi rendition="#i">χ</hi><hi rendition="#sub">111</hi>) (<hi rendition="#i">φ̄</hi><hi rendition="#sub">110</hi> + <hi rendition="#i">ψ</hi><hi rendition="#sub">110</hi> + <hi rendition="#i">χ</hi><hi rendition="#sub">110</hi>) (<hi rendition="#i">φ̄</hi><hi rendition="#sub">101</hi> + <hi rendition="#i">ψ</hi><hi rendition="#sub">101</hi> + <hi rendition="#i">χ</hi><hi rendition="#sub">101</hi>) (<hi rendition="#i">φ̄</hi><hi rendition="#sub">100</hi> + <hi rendition="#i">ψ</hi><hi rendition="#sub">100</hi> + <hi rendition="#i">χ</hi><hi rendition="#sub">100</hi>) ·<lb/><hi rendition="#et">· (<hi rendition="#i">φ̄</hi><hi rendition="#sub">011</hi> + <hi rendition="#i">ψ</hi><hi rendition="#sub">011</hi> + <hi rendition="#i">χ</hi><hi rendition="#sub">011</hi>) (<hi rendition="#i">φ̄</hi><hi rendition="#sub">010</hi> + <hi rendition="#i">ψ</hi><hi rendition="#sub">010</hi> + <hi rendition="#i">χ</hi><hi rendition="#sub">010</hi>) (<hi rendition="#i">φ̄</hi><hi rendition="#sub">001</hi> + <hi rendition="#i">ψ</hi><hi rendition="#sub">001</hi> + <hi rendition="#i">χ</hi><hi rendition="#sub">001</hi>) (<hi rendition="#i">φ̄</hi><hi rendition="#sub">000</hi> + <hi rendition="#i">ψ</hi><hi rendition="#sub">000</hi> + <hi rendition="#i">χ</hi><hi rendition="#sub">000</hi>) +</hi><lb/> + <hi rendition="#i">x</hi><hi rendition="#sub">1</hi> <hi rendition="#i">y z</hi> (<hi rendition="#i">φ</hi><hi rendition="#sub">111</hi> + <hi rendition="#i">ψ̄</hi><hi rendition="#sub">111</hi> + <hi rendition="#i">χ̄</hi><hi rendition="#sub">111</hi>) (<hi rendition="#i">φ</hi><hi rendition="#sub">110</hi> + <hi rendition="#i">ψ̄</hi><hi rendition="#sub">110</hi> + <hi rendition="#i">χ̄</hi><hi rendition="#sub">110</hi>) (<hi rendition="#i">φ</hi><hi rendition="#sub">101</hi> + <hi rendition="#i">ψ̄</hi><hi rendition="#sub">101</hi> + <hi rendition="#i">χ̄</hi><hi rendition="#sub">101</hi>) (<hi rendition="#i">φ</hi><hi rendition="#sub">100</hi> + <hi rendition="#i">ψ̄</hi><hi rendition="#sub">100</hi> + <hi rendition="#i">χ̄</hi><hi rendition="#sub">100</hi>) ·<lb/><hi rendition="#et">· (<hi rendition="#i">φ</hi><hi rendition="#sub">011</hi> + <hi rendition="#i">ψ̄</hi><hi rendition="#sub">011</hi> + <hi rendition="#i">χ̄</hi><hi rendition="#sub">011</hi>) (<hi rendition="#i">φ</hi><hi rendition="#sub">010</hi> + <hi rendition="#i">ψ̄</hi><hi rendition="#sub">010</hi> + <hi rendition="#i">χ̄</hi><hi rendition="#sub">010</hi>) (<hi rendition="#i">φ</hi><hi rendition="#sub">001</hi> + <hi rendition="#i">ψ̄</hi><hi rendition="#sub">001</hi> + <hi rendition="#i">χ̄</hi><hi rendition="#sub">001</hi>) (<hi rendition="#i">φ</hi><hi rendition="#sub">000</hi> + <hi rendition="#i">ψ̄</hi><hi rendition="#sub">000</hi> + <hi rendition="#i">χ̄</hi><hi rendition="#sub">000</hi>) +</hi><lb/> + <hi rendition="#i">x</hi><hi rendition="#sub">1</hi> <hi rendition="#i">y z</hi><hi rendition="#sub">1</hi> (<hi rendition="#i">φ</hi><hi rendition="#sub">111</hi> + <hi rendition="#i">ψ̄</hi><hi rendition="#sub">111</hi> + <hi rendition="#i">χ</hi><hi rendition="#sub">111</hi>) (<hi rendition="#i">φ</hi><hi rendition="#sub">110</hi> + <hi rendition="#i">ψ̄</hi><hi rendition="#sub">110</hi> + <hi rendition="#i">χ</hi><hi rendition="#sub">110</hi>) (<hi rendition="#i">φ</hi><hi rendition="#sub">101</hi> + <hi rendition="#i">ψ̄</hi><hi rendition="#sub">101</hi> + <hi rendition="#i">χ</hi><hi rendition="#sub">101</hi>) (<hi rendition="#i">φ</hi><hi rendition="#sub">100</hi> + <hi rendition="#i">ψ̄</hi><hi rendition="#sub">100</hi> + <hi rendition="#i">χ</hi><hi rendition="#sub">100</hi>) ·<lb/><hi rendition="#et">· (<hi rendition="#i">φ</hi><hi rendition="#sub">011</hi> + <hi rendition="#i">ψ̄</hi><hi rendition="#sub">011</hi> + <hi rendition="#i">χ</hi><hi rendition="#sub">011</hi>) (<hi rendition="#i">φ</hi><hi rendition="#sub">010</hi> + <hi rendition="#i">ψ̄</hi><hi rendition="#sub">010</hi> + <hi rendition="#i">χ</hi><hi rendition="#sub">010</hi>) (<hi rendition="#i">φ</hi><hi rendition="#sub">001</hi> + <hi rendition="#i">ψ̄</hi><hi rendition="#sub">001</hi> + <hi rendition="#i">χ</hi><hi rendition="#sub">001</hi>) (<hi rendition="#i">φ</hi><hi rendition="#sub">000</hi> + <hi rendition="#i">ψ̄</hi><hi rendition="#sub">000</hi> + <hi rendition="#i">χ</hi><hi rendition="#sub">000</hi>) +</hi><lb/> + <hi rendition="#i">x</hi><hi rendition="#sub">1</hi> <hi rendition="#i">y</hi><hi rendition="#sub">1</hi> <hi rendition="#i">z</hi> (<hi rendition="#i">φ</hi><hi rendition="#sub">111</hi> + <hi rendition="#i">ψ</hi><hi rendition="#sub">111</hi> + <hi rendition="#i">χ̄</hi><hi rendition="#sub">111</hi>) (<hi rendition="#i">φ</hi><hi rendition="#sub">110</hi> + <hi rendition="#i">ψ</hi><hi rendition="#sub">110</hi> + <hi rendition="#i">χ̄</hi><hi rendition="#sub">110</hi>) (<hi rendition="#i">φ</hi><hi rendition="#sub">101</hi> + <hi rendition="#i">ψ</hi><hi rendition="#sub">101</hi> + <hi rendition="#i">χ̄</hi><hi rendition="#sub">101</hi>) (<hi rendition="#i">φ</hi><hi rendition="#sub">100</hi> + <hi rendition="#i">ψ</hi><hi rendition="#sub">100</hi> + <hi rendition="#i">χ̄</hi><hi rendition="#sub">100</hi>) ·<lb/><hi rendition="#et">· (<hi rendition="#i">φ</hi><hi rendition="#sub">011</hi> + <hi rendition="#i">ψ</hi><hi rendition="#sub">011</hi> + <hi rendition="#i">χ̄</hi><hi rendition="#sub">011</hi>) (<hi rendition="#i">φ</hi><hi rendition="#sub">010</hi> + <hi rendition="#i">ψ</hi><hi rendition="#sub">010</hi> + <hi rendition="#i">χ̄</hi><hi rendition="#sub">010</hi>) (<hi rendition="#i">φ</hi><hi rendition="#sub">001</hi> + <hi rendition="#i">ψ</hi><hi rendition="#sub">001</hi> + <hi rendition="#i">χ̄</hi><hi rendition="#sub">001</hi>) (<hi rendition="#i">φ</hi><hi rendition="#sub">000</hi> + <hi rendition="#i">ψ</hi><hi rendition="#sub">000</hi> + <hi rendition="#i">χ̄</hi><hi rendition="#sub">000</hi>) +</hi><lb/> + <hi rendition="#i">x</hi><hi rendition="#sub">1</hi> <hi rendition="#i">y</hi><hi rendition="#sub">1</hi> <hi rendition="#i">z</hi><hi rendition="#sub">1</hi> (<hi rendition="#i">φ</hi><hi rendition="#sub">111</hi> + <hi rendition="#i">ψ</hi><hi rendition="#sub">111</hi> + <hi rendition="#i">χ</hi><hi rendition="#sub">111</hi>) (<hi rendition="#i">φ</hi><hi rendition="#sub">110</hi> + <hi rendition="#i">ψ</hi><hi rendition="#sub">110</hi> + <hi rendition="#i">χ</hi><hi rendition="#sub">110</hi>) (<hi rendition="#i">φ</hi><hi rendition="#sub">101</hi> + <hi rendition="#i">ψ</hi><hi rendition="#sub">101</hi> + <hi rendition="#i">χ</hi><hi rendition="#sub">101</hi>) (<hi rendition="#i">φ</hi><hi rendition="#sub">100</hi> + <hi rendition="#i">ψ</hi><hi rendition="#sub">100</hi> + <hi rendition="#i">χ</hi><hi rendition="#sub">100</hi>) ·<lb/><hi rendition="#et">· (<hi rendition="#i">φ</hi><hi rendition="#sub">011</hi> + <hi rendition="#i">ψ</hi><hi rendition="#sub">011</hi> + <hi rendition="#i">χ</hi><hi rendition="#sub">011</hi>) (<hi rendition="#i">φ</hi><hi rendition="#sub">010</hi> + <hi rendition="#i">ψ</hi><hi rendition="#sub">010</hi> + <hi rendition="#i">χ</hi><hi rendition="#sub">010</hi>) (<hi rendition="#i">φ</hi><hi rendition="#sub">001</hi> + <hi rendition="#i">ψ</hi><hi rendition="#sub">001</hi> + <hi rendition="#i">χ</hi><hi rendition="#sub">001</hi>) (<hi rendition="#i">φ</hi><hi rendition="#sub">000</hi> + <hi rendition="#i">ψ</hi><hi rendition="#sub">000</hi> + <hi rendition="#i">χ</hi><hi rendition="#sub">000</hi>).</hi></item> </list> </p><lb/> <p>Sei nun insbesondere:<lb/><hi rendition="#c"><hi rendition="#i">ψ</hi> (<hi rendition="#i">a</hi>, <hi rendition="#i">b</hi>, <hi rendition="#i">c</hi>) = <hi rendition="#i">φ</hi> (<hi rendition="#i">b</hi>, <hi rendition="#i">c</hi>, <hi rendition="#i">a</hi>), <hi rendition="#i">χ</hi> (<hi rendition="#i">a</hi>, <hi rendition="#i">b</hi>, <hi rendition="#i">c</hi>) = <hi rendition="#i">φ</hi> (<hi rendition="#i">c</hi>, <hi rendition="#i">a</hi>, <hi rendition="#i">b</hi>),</hi><lb/> mithin<lb/><hi rendition="#et"><hi rendition="#i">ψ</hi> (<hi rendition="#i">a</hi>, <hi rendition="#i">b</hi>, <hi rendition="#i">c</hi>) = <hi rendition="#i">φ</hi><hi rendition="#sub">111</hi> <hi rendition="#i">a b c</hi> + <hi rendition="#i">φ</hi><hi rendition="#sub">101</hi> <hi rendition="#i">a b c</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">φ</hi><hi rendition="#sub">011</hi> <hi rendition="#i">a b</hi><hi rendition="#sub">1</hi> <hi rendition="#i">c</hi> + <hi rendition="#i">φ</hi><hi rendition="#sub">001</hi> <hi rendition="#i">a b</hi><hi rendition="#sub">1</hi> <hi rendition="#i">c</hi><hi rendition="#sub">1</hi> +<lb/> + <hi rendition="#i">φ</hi><hi rendition="#sub">110</hi> <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> <hi rendition="#i">b c</hi> + <hi rendition="#i">φ</hi><hi rendition="#sub">100</hi> <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> <hi rendition="#i">b c</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">φ</hi><hi rendition="#sub">010</hi> <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> <hi rendition="#i">c</hi> + <hi rendition="#i">φ</hi><hi rendition="#sub">000</hi> <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>,<lb/><hi rendition="#i">χ</hi> (<hi rendition="#i">a</hi>, <hi rendition="#i">b</hi>, <hi rendition="#i">c</hi>) = <hi rendition="#i">φ</hi><hi rendition="#sub">111</hi> <hi rendition="#i">a b c</hi> + <hi rendition="#i">φ</hi><hi rendition="#sub">011</hi> <hi rendition="#i">a b c</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">φ</hi><hi rendition="#sub">110</hi> <hi rendition="#i">a b</hi><hi rendition="#sub">1</hi> <hi rendition="#i">c</hi> + <hi rendition="#i">φ</hi><hi rendition="#sub">010</hi> <hi rendition="#i">a b</hi><hi rendition="#sub">1</hi> <hi rendition="#i">c</hi><hi rendition="#sub">1</hi> +<lb/> + <hi rendition="#i">φ</hi><hi rendition="#sub">101</hi> <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> <hi rendition="#i">b c</hi> + <hi rendition="#i">φ</hi><hi rendition="#sub">001</hi> <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> <hi rendition="#i">b c</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">φ</hi><hi rendition="#sub">100</hi> <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> <hi rendition="#i">c</hi> + <hi rendition="#i">φ</hi><hi rendition="#sub">000</hi> <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>,</hi><lb/> oder also:<lb/><hi rendition="#c"><hi rendition="#i">ψ</hi><hi rendition="#sub">111</hi> = <hi rendition="#i">φ</hi><hi rendition="#sub">111</hi>, <hi rendition="#i">ψ</hi><hi rendition="#sub">110</hi> = <hi rendition="#i">φ</hi><hi rendition="#sub">101</hi>, <hi rendition="#i">ψ</hi><hi rendition="#sub">101</hi> = <hi rendition="#i">φ</hi><hi rendition="#sub">011</hi>, <hi rendition="#i">ψ</hi><hi rendition="#sub">100</hi> = <hi rendition="#i">φ</hi><hi rendition="#sub">001</hi>,<lb/><hi rendition="#i">ψ</hi><hi rendition="#sub">011</hi> = <hi rendition="#i">φ</hi><hi rendition="#sub">110</hi>, <hi rendition="#i">ψ</hi><hi rendition="#sub">010</hi> = <hi rendition="#i">φ</hi><hi rendition="#sub">100</hi>, <hi rendition="#i">ψ</hi><hi rendition="#sub">001</hi> = <hi rendition="#i">φ</hi><hi rendition="#sub">010</hi>, <hi rendition="#i">ψ</hi><hi rendition="#sub">000</hi> = <hi rendition="#i">φ</hi><hi rendition="#sub">000</hi>,<lb/><hi rendition="#i">χ</hi><hi rendition="#sub">111</hi> = <hi rendition="#i">φ</hi><hi rendition="#sub">111</hi>, <hi rendition="#i">χ</hi><hi rendition="#sub">110</hi> = <hi rendition="#i">φ</hi><hi rendition="#sub">011</hi>, <hi rendition="#i">χ</hi><hi rendition="#sub">101</hi> = <hi rendition="#i">φ</hi><hi rendition="#sub">110</hi>, <hi rendition="#i">χ</hi><hi rendition="#sub">100</hi> = <hi rendition="#i">φ</hi><hi rendition="#sub">010</hi>,<lb/><hi rendition="#i">χ</hi><hi rendition="#sub">011</hi> = <hi rendition="#i">φ</hi><hi rendition="#sub">101</hi>, <hi rendition="#i">χ</hi><hi rendition="#sub">010</hi> = <hi rendition="#i">φ</hi><hi rendition="#sub">001</hi>, <hi rendition="#i">χ</hi><hi rendition="#sub">001</hi> = <hi rendition="#i">φ</hi><hi rendition="#sub">100</hi>, <hi rendition="#i">χ</hi><hi rendition="#sub">000</hi> = <hi rendition="#i">φ</hi><hi rendition="#sub">000</hi>,</hi><lb/> desgleichen mit übergesetzten Horizontalstrichen, so erhalten wir durch<lb/> diese Einsetzungen als die Resultante der Elimination von <hi rendition="#i">a</hi>, <hi rendition="#i">b</hi>, <hi rendition="#i">c</hi> aus den<lb/> drei Gleichungen:<lb/><hi rendition="#c"><hi rendition="#i">x</hi> = <hi rendition="#i">φ</hi> (<hi rendition="#i">a</hi>, <hi rendition="#i">b</hi>, <hi rendition="#i">c</hi>) <hi rendition="#i">y</hi> = <hi rendition="#i">φ</hi> (<hi rendition="#i">b</hi>, <hi rendition="#i">c</hi>, <hi rendition="#i">a</hi>), <hi rendition="#i">z</hi> = <hi rendition="#i">φ</hi> (<hi rendition="#i">c</hi>, <hi rendition="#i">a</hi>, <hi rendition="#i">b</hi>)</hi><lb/> die nachstehende Gleichung:<lb/></p> </div> </div> </body> </text> </TEI> [697/0717]
Zur Gruppentheorie des identischen Kalkuls.
0 = x y z (φ̄111 + ψ̄111 + χ̄111) (φ̄110 + ψ̄110 + χ̄110) (φ̄101 + ψ̄101 + χ̄101) (φ̄100 + ψ̄100 + χ̄100) ·
· (φ̄011 + ψ̄011 + χ̄011) (φ̄010 + ψ̄010 + χ̄010) (φ̄001 + ψ̄001 + χ̄001) (φ̄000 + ψ̄000 + χ̄000) +
+ x y z1 (φ̄111 + ψ̄111 + χ111) (φ̄110 + ψ̄110 + χ110) (φ̄101 + ψ̄101 + χ101) (φ̄100 + ψ̄100 + χ100) ·
· (φ̄011 + ψ̄011 + χ011) (φ̄010 + ψ̄010 + χ010) (φ̄001 + ψ̄001 + χ001) (φ̄000 + ψ̄000 + χ000) +
+ x y1 z (φ̄111 + ψ111 + χ̄111) (φ̄110 + ψ110 + χ̄110) (φ̄101 + ψ101 + χ̄101) (φ̄100 + ψ100 + χ̄100) ·
· (φ̄011 + ψ011 + χ̄011) (φ̄010 + ψ010 + χ̄010) (φ̄001 + ψ001 + χ̄001) (φ̄000 + ψ000 + χ̄000) +
+ x y1 z1 (φ̄111 + ψ111 + χ111) (φ̄110 + ψ110 + χ110) (φ̄101 + ψ101 + χ101) (φ̄100 + ψ100 + χ100) ·
· (φ̄011 + ψ011 + χ011) (φ̄010 + ψ010 + χ010) (φ̄001 + ψ001 + χ001) (φ̄000 + ψ000 + χ000) +
+ x1 y z (φ111 + ψ̄111 + χ̄111) (φ110 + ψ̄110 + χ̄110) (φ101 + ψ̄101 + χ̄101) (φ100 + ψ̄100 + χ̄100) ·
· (φ011 + ψ̄011 + χ̄011) (φ010 + ψ̄010 + χ̄010) (φ001 + ψ̄001 + χ̄001) (φ000 + ψ̄000 + χ̄000) +
+ x1 y z1 (φ111 + ψ̄111 + χ111) (φ110 + ψ̄110 + χ110) (φ101 + ψ̄101 + χ101) (φ100 + ψ̄100 + χ100) ·
· (φ011 + ψ̄011 + χ011) (φ010 + ψ̄010 + χ010) (φ001 + ψ̄001 + χ001) (φ000 + ψ̄000 + χ000) +
+ x1 y1 z (φ111 + ψ111 + χ̄111) (φ110 + ψ110 + χ̄110) (φ101 + ψ101 + χ̄101) (φ100 + ψ100 + χ̄100) ·
· (φ011 + ψ011 + χ̄011) (φ010 + ψ010 + χ̄010) (φ001 + ψ001 + χ̄001) (φ000 + ψ000 + χ̄000) +
+ x1 y1 z1 (φ111 + ψ111 + χ111) (φ110 + ψ110 + χ110) (φ101 + ψ101 + χ101) (φ100 + ψ100 + χ100) ·
· (φ011 + ψ011 + χ011) (φ010 + ψ010 + χ010) (φ001 + ψ001 + χ001) (φ000 + ψ000 + χ000).
Sei nun insbesondere:
ψ (a, b, c) = φ (b, c, a), χ (a, b, c) = φ (c, a, b),
mithin
ψ (a, b, c) = φ111 a b c + φ101 a b c1 + φ011 a b1 c + φ001 a b1 c1 +
+ φ110 a1 b c + φ100 a1 b c1 + φ010 a1 b1 c + φ000 a1 b1 c1,
χ (a, b, c) = φ111 a b c + φ011 a b c1 + φ110 a b1 c + φ010 a b1 c1 +
+ φ101 a1 b c + φ001 a1 b c1 + φ100 a1 b1 c + φ000 a1 b1 c1,
oder also:
ψ111 = φ111, ψ110 = φ101, ψ101 = φ011, ψ100 = φ001,
ψ011 = φ110, ψ010 = φ100, ψ001 = φ010, ψ000 = φ000,
χ111 = φ111, χ110 = φ011, χ101 = φ110, χ100 = φ010,
χ011 = φ101, χ010 = φ001, χ001 = φ100, χ000 = φ000,
desgleichen mit übergesetzten Horizontalstrichen, so erhalten wir durch
diese Einsetzungen als die Resultante der Elimination von a, b, c aus den
drei Gleichungen:
x = φ (a, b, c) y = φ (b, c, a), z = φ (c, a, b)
die nachstehende Gleichung:
Suche im WerkInformationen zum Werk
Download dieses Werks
XML (TEI P5) ·
HTML ·
Text Metadaten zum WerkTEI-Header · CMDI · Dublin Core Ansichten dieser Seite
Voyant Tools ?Language Resource Switchboard?FeedbackSie haben einen Fehler gefunden? Dann können Sie diesen über unsere Qualitätssicherungsplattform DTAQ melden. Kommentar zur DTA-AusgabeDieses Werk wurde gemäß den DTA-Transkriptionsrichtlinien im Double-Keying-Verfahren von Nicht-Muttersprachlern erfasst und in XML/TEI P5 nach DTA-Basisformat kodiert.
|
Insbesondere im Hinblick auf die §§ 86a StGB und 130 StGB wird festgestellt, dass die auf diesen Seiten abgebildeten Inhalte weder in irgendeiner Form propagandistischen Zwecken dienen, oder Werbung für verbotene Organisationen oder Vereinigungen darstellen, oder nationalsozialistische Verbrechen leugnen oder verharmlosen, noch zum Zwecke der Herabwürdigung der Menschenwürde gezeigt werden. Die auf diesen Seiten abgebildeten Inhalte (in Wort und Bild) dienen im Sinne des § 86 StGB Abs. 3 ausschließlich historischen, sozial- oder kulturwissenschaftlichen Forschungszwecken. Ihre Veröffentlichung erfolgt in der Absicht, Wissen zur Anregung der intellektuellen Selbstständigkeit und Verantwortungsbereitschaft des Staatsbürgers zu vermitteln und damit der Förderung seiner Mündigkeit zu dienen.
2007–2024 Deutsches Textarchiv, Berlin-Brandenburgische Akademie der Wissenschaften.
Kontakt: redaktion(at)deutschestextarchiv.de. |