Anmelden (DTAQ) DWDS     dlexDB     CLARIN-D

Schröder, Ernst: Vorlesungen über die Algebra der Logik. Bd. 1. Leipzig, 1890.

Bild:
<< vorherige Seite

Zur Gruppentheorie des identischen Kalkuls.
0 = x y z (phn111 + psn111 + khn111) (phn110 + psn110 + khn110) (phn101 + psn101 + khn101) (phn100 + psn100 + khn100) ·
· (phn011 + psn011 + khn011) (phn010 + psn010 + khn010) (phn001 + psn001 + khn001) (phn000 + psn000 + khn000) +
+ x y z1 (phn111 + psn111 + kh111) (phn110 + psn110 + kh110) (phn101 + psn101 + kh101) (phn100 + psn100 + kh100) ·
· (phn011 + psn011 + kh011) (phn010 + psn010 + kh010) (phn001 + psn001 + kh001) (phn000 + psn000 + kh000) +
+ x y1 z (phn111 + ps111 + khn111) (phn110 + ps110 + khn110) (phn101 + ps101 + khn101) (phn100 + ps100 + khn100) ·
· (phn011 + ps011 + khn011) (phn010 + ps010 + khn010) (phn001 + ps001 + khn001) (phn000 + ps000 + khn000) +
+ x y1 z1 (phn111 + ps111 + kh111) (phn110 + ps110 + kh110) (phn101 + ps101 + kh101) (phn100 + ps100 + kh100) ·
· (phn011 + ps011 + kh011) (phn010 + ps010 + kh010) (phn001 + ps001 + kh001) (phn000 + ps000 + kh000) +
+ x1 y z (ph111 + psn111 + khn111) (ph110 + psn110 + khn110) (ph101 + psn101 + khn101) (ph100 + psn100 + khn100) ·
· (ph011 + psn011 + khn011) (ph010 + psn010 + khn010) (ph001 + psn001 + khn001) (ph000 + psn000 + khn000) +
+ x1 y z1 (ph111 + psn111 + kh111) (ph110 + psn110 + kh110) (ph101 + psn101 + kh101) (ph100 + psn100 + kh100) ·
· (ph011 + psn011 + kh011) (ph010 + psn010 + kh010) (ph001 + psn001 + kh001) (ph000 + psn000 + kh000) +
+ x1 y1 z (ph111 + ps111 + khn111) (ph110 + ps110 + khn110) (ph101 + ps101 + khn101) (ph100 + ps100 + khn100) ·
· (ph011 + ps011 + khn011) (ph010 + ps010 + khn010) (ph001 + ps001 + khn001) (ph000 + ps000 + khn000) +
+ x1 y1 z1 (ph111 + ps111 + kh111) (ph110 + ps110 + kh110) (ph101 + ps101 + kh101) (ph100 + ps100 + kh100) ·
· (ph011 + ps011 + kh011) (ph010 + ps010 + kh010) (ph001 + ps001 + kh001) (ph000 + ps000 + kh000).

Sei nun insbesondere:
ps (a, b, c) = ph (b, c, a), kh (a, b, c) = ph (c, a, b),
mithin
ps (a, b, c) = ph111 a b c + ph101 a b c1 + ph011 a b1 c + ph001 a b1 c1 +
+ ph110 a1 b c + ph100 a1 b c1 + ph010 a1 b1 c + ph000 a1 b1 c1,
kh (a, b, c) = ph111 a b c + ph011 a b c1 + ph110 a b1 c + ph010 a b1 c1 +
+ ph101 a1 b c + ph001 a1 b c1 + ph100 a1 b1 c + ph000 a1 b1 c1,

oder also:
ps111 = ph111, ps110 = ph101, ps101 = ph011, ps100 = ph001,
ps011 = ph110, ps010 = ph100, ps001 = ph010, ps000 = ph000,
kh111 = ph111, kh110 = ph011, kh101 = ph110, kh100 = ph010,
kh011 = ph101, kh010 = ph001, kh001 = ph100, kh000 = ph000,

desgleichen mit übergesetzten Horizontalstrichen, so erhalten wir durch
diese Einsetzungen als die Resultante der Elimination von a, b, c aus den
drei Gleichungen:
x = ph (a, b, c) y = ph (b, c, a), z = ph (c, a, b)
die nachstehende Gleichung:

Zur Gruppentheorie des identischen Kalkuls.
0 = x y z (φ̄111 + ψ̄111 + χ̄111) (φ̄110 + ψ̄110 + χ̄110) (φ̄101 + ψ̄101 + χ̄101) (φ̄100 + ψ̄100 + χ̄100) ·
· (φ̄011 + ψ̄011 + χ̄011) (φ̄010 + ψ̄010 + χ̄010) (φ̄001 + ψ̄001 + χ̄001) (φ̄000 + ψ̄000 + χ̄000) +
+ x y z1 (φ̄111 + ψ̄111 + χ111) (φ̄110 + ψ̄110 + χ110) (φ̄101 + ψ̄101 + χ101) (φ̄100 + ψ̄100 + χ100) ·
· (φ̄011 + ψ̄011 + χ011) (φ̄010 + ψ̄010 + χ010) (φ̄001 + ψ̄001 + χ001) (φ̄000 + ψ̄000 + χ000) +
+ x y1 z (φ̄111 + ψ111 + χ̄111) (φ̄110 + ψ110 + χ̄110) (φ̄101 + ψ101 + χ̄101) (φ̄100 + ψ100 + χ̄100) ·
· (φ̄011 + ψ011 + χ̄011) (φ̄010 + ψ010 + χ̄010) (φ̄001 + ψ001 + χ̄001) (φ̄000 + ψ000 + χ̄000) +
+ x y1 z1 (φ̄111 + ψ111 + χ111) (φ̄110 + ψ110 + χ110) (φ̄101 + ψ101 + χ101) (φ̄100 + ψ100 + χ100) ·
· (φ̄011 + ψ011 + χ011) (φ̄010 + ψ010 + χ010) (φ̄001 + ψ001 + χ001) (φ̄000 + ψ000 + χ000) +
+ x1 y z (φ111 + ψ̄111 + χ̄111) (φ110 + ψ̄110 + χ̄110) (φ101 + ψ̄101 + χ̄101) (φ100 + ψ̄100 + χ̄100) ·
· (φ011 + ψ̄011 + χ̄011) (φ010 + ψ̄010 + χ̄010) (φ001 + ψ̄001 + χ̄001) (φ000 + ψ̄000 + χ̄000) +
+ x1 y z1 (φ111 + ψ̄111 + χ111) (φ110 + ψ̄110 + χ110) (φ101 + ψ̄101 + χ101) (φ100 + ψ̄100 + χ100) ·
· (φ011 + ψ̄011 + χ011) (φ010 + ψ̄010 + χ010) (φ001 + ψ̄001 + χ001) (φ000 + ψ̄000 + χ000) +
+ x1 y1 z (φ111 + ψ111 + χ̄111) (φ110 + ψ110 + χ̄110) (φ101 + ψ101 + χ̄101) (φ100 + ψ100 + χ̄100) ·
· (φ011 + ψ011 + χ̄011) (φ010 + ψ010 + χ̄010) (φ001 + ψ001 + χ̄001) (φ000 + ψ000 + χ̄000) +
+ x1 y1 z1 (φ111 + ψ111 + χ111) (φ110 + ψ110 + χ110) (φ101 + ψ101 + χ101) (φ100 + ψ100 + χ100) ·
· (φ011 + ψ011 + χ011) (φ010 + ψ010 + χ010) (φ001 + ψ001 + χ001) (φ000 + ψ000 + χ000).

Sei nun insbesondere:
ψ (a, b, c) = φ (b, c, a), χ (a, b, c) = φ (c, a, b),
mithin
ψ (a, b, c) = φ111 a b c + φ101 a b c1 + φ011 a b1 c + φ001 a b1 c1 +
+ φ110 a1 b c + φ100 a1 b c1 + φ010 a1 b1 c + φ000 a1 b1 c1,
χ (a, b, c) = φ111 a b c + φ011 a b c1 + φ110 a b1 c + φ010 a b1 c1 +
+ φ101 a1 b c + φ001 a1 b c1 + φ100 a1 b1 c + φ000 a1 b1 c1,

oder also:
ψ111 = φ111, ψ110 = φ101, ψ101 = φ011, ψ100 = φ001,
ψ011 = φ110, ψ010 = φ100, ψ001 = φ010, ψ000 = φ000,
χ111 = φ111, χ110 = φ011, χ101 = φ110, χ100 = φ010,
χ011 = φ101, χ010 = φ001, χ001 = φ100, χ000 = φ000,

desgleichen mit übergesetzten Horizontalstrichen, so erhalten wir durch
diese Einsetzungen als die Resultante der Elimination von a, b, c aus den
drei Gleichungen:
x = φ (a, b, c) y = φ (b, c, a), z = φ (c, a, b)
die nachstehende Gleichung:

<TEI>
  <text>
    <body>
      <div n="1">
        <div n="2">
          <p>
            <pb facs="#f0717" n="697"/>
            <fw place="top" type="header">Zur Gruppentheorie des identischen Kalkuls.</fw><lb/>
            <list>
              <item>0 = <hi rendition="#i">x y z</hi> (<hi rendition="#i">&#x03C6;&#x0304;</hi><hi rendition="#sub">111</hi> + <hi rendition="#i">&#x03C8;&#x0304;</hi><hi rendition="#sub">111</hi> + <hi rendition="#i">&#x03C7;&#x0304;</hi><hi rendition="#sub">111</hi>) (<hi rendition="#i">&#x03C6;&#x0304;</hi><hi rendition="#sub">110</hi> + <hi rendition="#i">&#x03C8;&#x0304;</hi><hi rendition="#sub">110</hi> + <hi rendition="#i">&#x03C7;&#x0304;</hi><hi rendition="#sub">110</hi>) (<hi rendition="#i">&#x03C6;&#x0304;</hi><hi rendition="#sub">101</hi> + <hi rendition="#i">&#x03C8;&#x0304;</hi><hi rendition="#sub">101</hi> + <hi rendition="#i">&#x03C7;&#x0304;</hi><hi rendition="#sub">101</hi>) (<hi rendition="#i">&#x03C6;&#x0304;</hi><hi rendition="#sub">100</hi> + <hi rendition="#i">&#x03C8;&#x0304;</hi><hi rendition="#sub">100</hi> + <hi rendition="#i">&#x03C7;&#x0304;</hi><hi rendition="#sub">100</hi>) ·<lb/><hi rendition="#et">· (<hi rendition="#i">&#x03C6;&#x0304;</hi><hi rendition="#sub">011</hi> + <hi rendition="#i">&#x03C8;&#x0304;</hi><hi rendition="#sub">011</hi> + <hi rendition="#i">&#x03C7;&#x0304;</hi><hi rendition="#sub">011</hi>) (<hi rendition="#i">&#x03C6;&#x0304;</hi><hi rendition="#sub">010</hi> + <hi rendition="#i">&#x03C8;&#x0304;</hi><hi rendition="#sub">010</hi> + <hi rendition="#i">&#x03C7;&#x0304;</hi><hi rendition="#sub">010</hi>) (<hi rendition="#i">&#x03C6;&#x0304;</hi><hi rendition="#sub">001</hi> + <hi rendition="#i">&#x03C8;&#x0304;</hi><hi rendition="#sub">001</hi> + <hi rendition="#i">&#x03C7;&#x0304;</hi><hi rendition="#sub">001</hi>) (<hi rendition="#i">&#x03C6;&#x0304;</hi><hi rendition="#sub">000</hi> + <hi rendition="#i">&#x03C8;&#x0304;</hi><hi rendition="#sub">000</hi> + <hi rendition="#i">&#x03C7;&#x0304;</hi><hi rendition="#sub">000</hi>) +</hi><lb/>
+ <hi rendition="#i">x y z</hi><hi rendition="#sub">1</hi> (<hi rendition="#i">&#x03C6;&#x0304;</hi><hi rendition="#sub">111</hi> + <hi rendition="#i">&#x03C8;&#x0304;</hi><hi rendition="#sub">111</hi> + <hi rendition="#i">&#x03C7;</hi><hi rendition="#sub">111</hi>) (<hi rendition="#i">&#x03C6;&#x0304;</hi><hi rendition="#sub">110</hi> + <hi rendition="#i">&#x03C8;&#x0304;</hi><hi rendition="#sub">110</hi> + <hi rendition="#i">&#x03C7;</hi><hi rendition="#sub">110</hi>) (<hi rendition="#i">&#x03C6;&#x0304;</hi><hi rendition="#sub">101</hi> + <hi rendition="#i">&#x03C8;&#x0304;</hi><hi rendition="#sub">101</hi> + <hi rendition="#i">&#x03C7;</hi><hi rendition="#sub">101</hi>) (<hi rendition="#i">&#x03C6;&#x0304;</hi><hi rendition="#sub">100</hi> + <hi rendition="#i">&#x03C8;&#x0304;</hi><hi rendition="#sub">100</hi> + <hi rendition="#i">&#x03C7;</hi><hi rendition="#sub">100</hi>) ·<lb/><hi rendition="#et">· (<hi rendition="#i">&#x03C6;&#x0304;</hi><hi rendition="#sub">011</hi> + <hi rendition="#i">&#x03C8;&#x0304;</hi><hi rendition="#sub">011</hi> + <hi rendition="#i">&#x03C7;</hi><hi rendition="#sub">011</hi>) (<hi rendition="#i">&#x03C6;&#x0304;</hi><hi rendition="#sub">010</hi> + <hi rendition="#i">&#x03C8;&#x0304;</hi><hi rendition="#sub">010</hi> + <hi rendition="#i">&#x03C7;</hi><hi rendition="#sub">010</hi>) (<hi rendition="#i">&#x03C6;&#x0304;</hi><hi rendition="#sub">001</hi> + <hi rendition="#i">&#x03C8;&#x0304;</hi><hi rendition="#sub">001</hi> + <hi rendition="#i">&#x03C7;</hi><hi rendition="#sub">001</hi>) (<hi rendition="#i">&#x03C6;&#x0304;</hi><hi rendition="#sub">000</hi> + <hi rendition="#i">&#x03C8;&#x0304;</hi><hi rendition="#sub">000</hi> + <hi rendition="#i">&#x03C7;</hi><hi rendition="#sub">000</hi>) +</hi><lb/>
+ <hi rendition="#i">x y</hi><hi rendition="#sub">1</hi> <hi rendition="#i">z</hi> (<hi rendition="#i">&#x03C6;&#x0304;</hi><hi rendition="#sub">111</hi> + <hi rendition="#i">&#x03C8;</hi><hi rendition="#sub">111</hi> + <hi rendition="#i">&#x03C7;&#x0304;</hi><hi rendition="#sub">111</hi>) (<hi rendition="#i">&#x03C6;&#x0304;</hi><hi rendition="#sub">110</hi> + <hi rendition="#i">&#x03C8;</hi><hi rendition="#sub">110</hi> + <hi rendition="#i">&#x03C7;&#x0304;</hi><hi rendition="#sub">110</hi>) (<hi rendition="#i">&#x03C6;&#x0304;</hi><hi rendition="#sub">101</hi> + <hi rendition="#i">&#x03C8;</hi><hi rendition="#sub">101</hi> + <hi rendition="#i">&#x03C7;&#x0304;</hi><hi rendition="#sub">101</hi>) (<hi rendition="#i">&#x03C6;&#x0304;</hi><hi rendition="#sub">100</hi> + <hi rendition="#i">&#x03C8;</hi><hi rendition="#sub">100</hi> + <hi rendition="#i">&#x03C7;&#x0304;</hi><hi rendition="#sub">100</hi>) ·<lb/><hi rendition="#et">· (<hi rendition="#i">&#x03C6;&#x0304;</hi><hi rendition="#sub">011</hi> + <hi rendition="#i">&#x03C8;</hi><hi rendition="#sub">011</hi> + <hi rendition="#i">&#x03C7;&#x0304;</hi><hi rendition="#sub">011</hi>) (<hi rendition="#i">&#x03C6;&#x0304;</hi><hi rendition="#sub">010</hi> + <hi rendition="#i">&#x03C8;</hi><hi rendition="#sub">010</hi> + <hi rendition="#i">&#x03C7;&#x0304;</hi><hi rendition="#sub">010</hi>) (<hi rendition="#i">&#x03C6;&#x0304;</hi><hi rendition="#sub">001</hi> + <hi rendition="#i">&#x03C8;</hi><hi rendition="#sub">001</hi> + <hi rendition="#i">&#x03C7;&#x0304;</hi><hi rendition="#sub">001</hi>) (<hi rendition="#i">&#x03C6;&#x0304;</hi><hi rendition="#sub">000</hi> + <hi rendition="#i">&#x03C8;</hi><hi rendition="#sub">000</hi> + <hi rendition="#i">&#x03C7;&#x0304;</hi><hi rendition="#sub">000</hi>) +</hi><lb/>
+ <hi rendition="#i">x y</hi><hi rendition="#sub">1</hi> <hi rendition="#i">z</hi><hi rendition="#sub">1</hi> (<hi rendition="#i">&#x03C6;&#x0304;</hi><hi rendition="#sub">111</hi> + <hi rendition="#i">&#x03C8;</hi><hi rendition="#sub">111</hi> + <hi rendition="#i">&#x03C7;</hi><hi rendition="#sub">111</hi>) (<hi rendition="#i">&#x03C6;&#x0304;</hi><hi rendition="#sub">110</hi> + <hi rendition="#i">&#x03C8;</hi><hi rendition="#sub">110</hi> + <hi rendition="#i">&#x03C7;</hi><hi rendition="#sub">110</hi>) (<hi rendition="#i">&#x03C6;&#x0304;</hi><hi rendition="#sub">101</hi> + <hi rendition="#i">&#x03C8;</hi><hi rendition="#sub">101</hi> + <hi rendition="#i">&#x03C7;</hi><hi rendition="#sub">101</hi>) (<hi rendition="#i">&#x03C6;&#x0304;</hi><hi rendition="#sub">100</hi> + <hi rendition="#i">&#x03C8;</hi><hi rendition="#sub">100</hi> + <hi rendition="#i">&#x03C7;</hi><hi rendition="#sub">100</hi>) ·<lb/><hi rendition="#et">· (<hi rendition="#i">&#x03C6;&#x0304;</hi><hi rendition="#sub">011</hi> + <hi rendition="#i">&#x03C8;</hi><hi rendition="#sub">011</hi> + <hi rendition="#i">&#x03C7;</hi><hi rendition="#sub">011</hi>) (<hi rendition="#i">&#x03C6;&#x0304;</hi><hi rendition="#sub">010</hi> + <hi rendition="#i">&#x03C8;</hi><hi rendition="#sub">010</hi> + <hi rendition="#i">&#x03C7;</hi><hi rendition="#sub">010</hi>) (<hi rendition="#i">&#x03C6;&#x0304;</hi><hi rendition="#sub">001</hi> + <hi rendition="#i">&#x03C8;</hi><hi rendition="#sub">001</hi> + <hi rendition="#i">&#x03C7;</hi><hi rendition="#sub">001</hi>) (<hi rendition="#i">&#x03C6;&#x0304;</hi><hi rendition="#sub">000</hi> + <hi rendition="#i">&#x03C8;</hi><hi rendition="#sub">000</hi> + <hi rendition="#i">&#x03C7;</hi><hi rendition="#sub">000</hi>) +</hi><lb/>
+ <hi rendition="#i">x</hi><hi rendition="#sub">1</hi> <hi rendition="#i">y z</hi> (<hi rendition="#i">&#x03C6;</hi><hi rendition="#sub">111</hi> + <hi rendition="#i">&#x03C8;&#x0304;</hi><hi rendition="#sub">111</hi> + <hi rendition="#i">&#x03C7;&#x0304;</hi><hi rendition="#sub">111</hi>) (<hi rendition="#i">&#x03C6;</hi><hi rendition="#sub">110</hi> + <hi rendition="#i">&#x03C8;&#x0304;</hi><hi rendition="#sub">110</hi> + <hi rendition="#i">&#x03C7;&#x0304;</hi><hi rendition="#sub">110</hi>) (<hi rendition="#i">&#x03C6;</hi><hi rendition="#sub">101</hi> + <hi rendition="#i">&#x03C8;&#x0304;</hi><hi rendition="#sub">101</hi> + <hi rendition="#i">&#x03C7;&#x0304;</hi><hi rendition="#sub">101</hi>) (<hi rendition="#i">&#x03C6;</hi><hi rendition="#sub">100</hi> + <hi rendition="#i">&#x03C8;&#x0304;</hi><hi rendition="#sub">100</hi> + <hi rendition="#i">&#x03C7;&#x0304;</hi><hi rendition="#sub">100</hi>) ·<lb/><hi rendition="#et">· (<hi rendition="#i">&#x03C6;</hi><hi rendition="#sub">011</hi> + <hi rendition="#i">&#x03C8;&#x0304;</hi><hi rendition="#sub">011</hi> + <hi rendition="#i">&#x03C7;&#x0304;</hi><hi rendition="#sub">011</hi>) (<hi rendition="#i">&#x03C6;</hi><hi rendition="#sub">010</hi> + <hi rendition="#i">&#x03C8;&#x0304;</hi><hi rendition="#sub">010</hi> + <hi rendition="#i">&#x03C7;&#x0304;</hi><hi rendition="#sub">010</hi>) (<hi rendition="#i">&#x03C6;</hi><hi rendition="#sub">001</hi> + <hi rendition="#i">&#x03C8;&#x0304;</hi><hi rendition="#sub">001</hi> + <hi rendition="#i">&#x03C7;&#x0304;</hi><hi rendition="#sub">001</hi>) (<hi rendition="#i">&#x03C6;</hi><hi rendition="#sub">000</hi> + <hi rendition="#i">&#x03C8;&#x0304;</hi><hi rendition="#sub">000</hi> + <hi rendition="#i">&#x03C7;&#x0304;</hi><hi rendition="#sub">000</hi>) +</hi><lb/>
+ <hi rendition="#i">x</hi><hi rendition="#sub">1</hi> <hi rendition="#i">y z</hi><hi rendition="#sub">1</hi> (<hi rendition="#i">&#x03C6;</hi><hi rendition="#sub">111</hi> + <hi rendition="#i">&#x03C8;&#x0304;</hi><hi rendition="#sub">111</hi> + <hi rendition="#i">&#x03C7;</hi><hi rendition="#sub">111</hi>) (<hi rendition="#i">&#x03C6;</hi><hi rendition="#sub">110</hi> + <hi rendition="#i">&#x03C8;&#x0304;</hi><hi rendition="#sub">110</hi> + <hi rendition="#i">&#x03C7;</hi><hi rendition="#sub">110</hi>) (<hi rendition="#i">&#x03C6;</hi><hi rendition="#sub">101</hi> + <hi rendition="#i">&#x03C8;&#x0304;</hi><hi rendition="#sub">101</hi> + <hi rendition="#i">&#x03C7;</hi><hi rendition="#sub">101</hi>) (<hi rendition="#i">&#x03C6;</hi><hi rendition="#sub">100</hi> + <hi rendition="#i">&#x03C8;&#x0304;</hi><hi rendition="#sub">100</hi> + <hi rendition="#i">&#x03C7;</hi><hi rendition="#sub">100</hi>) ·<lb/><hi rendition="#et">· (<hi rendition="#i">&#x03C6;</hi><hi rendition="#sub">011</hi> + <hi rendition="#i">&#x03C8;&#x0304;</hi><hi rendition="#sub">011</hi> + <hi rendition="#i">&#x03C7;</hi><hi rendition="#sub">011</hi>) (<hi rendition="#i">&#x03C6;</hi><hi rendition="#sub">010</hi> + <hi rendition="#i">&#x03C8;&#x0304;</hi><hi rendition="#sub">010</hi> + <hi rendition="#i">&#x03C7;</hi><hi rendition="#sub">010</hi>) (<hi rendition="#i">&#x03C6;</hi><hi rendition="#sub">001</hi> + <hi rendition="#i">&#x03C8;&#x0304;</hi><hi rendition="#sub">001</hi> + <hi rendition="#i">&#x03C7;</hi><hi rendition="#sub">001</hi>) (<hi rendition="#i">&#x03C6;</hi><hi rendition="#sub">000</hi> + <hi rendition="#i">&#x03C8;&#x0304;</hi><hi rendition="#sub">000</hi> + <hi rendition="#i">&#x03C7;</hi><hi rendition="#sub">000</hi>) +</hi><lb/>
+ <hi rendition="#i">x</hi><hi rendition="#sub">1</hi> <hi rendition="#i">y</hi><hi rendition="#sub">1</hi> <hi rendition="#i">z</hi> (<hi rendition="#i">&#x03C6;</hi><hi rendition="#sub">111</hi> + <hi rendition="#i">&#x03C8;</hi><hi rendition="#sub">111</hi> + <hi rendition="#i">&#x03C7;&#x0304;</hi><hi rendition="#sub">111</hi>) (<hi rendition="#i">&#x03C6;</hi><hi rendition="#sub">110</hi> + <hi rendition="#i">&#x03C8;</hi><hi rendition="#sub">110</hi> + <hi rendition="#i">&#x03C7;&#x0304;</hi><hi rendition="#sub">110</hi>) (<hi rendition="#i">&#x03C6;</hi><hi rendition="#sub">101</hi> + <hi rendition="#i">&#x03C8;</hi><hi rendition="#sub">101</hi> + <hi rendition="#i">&#x03C7;&#x0304;</hi><hi rendition="#sub">101</hi>) (<hi rendition="#i">&#x03C6;</hi><hi rendition="#sub">100</hi> + <hi rendition="#i">&#x03C8;</hi><hi rendition="#sub">100</hi> + <hi rendition="#i">&#x03C7;&#x0304;</hi><hi rendition="#sub">100</hi>) ·<lb/><hi rendition="#et">· (<hi rendition="#i">&#x03C6;</hi><hi rendition="#sub">011</hi> + <hi rendition="#i">&#x03C8;</hi><hi rendition="#sub">011</hi> + <hi rendition="#i">&#x03C7;&#x0304;</hi><hi rendition="#sub">011</hi>) (<hi rendition="#i">&#x03C6;</hi><hi rendition="#sub">010</hi> + <hi rendition="#i">&#x03C8;</hi><hi rendition="#sub">010</hi> + <hi rendition="#i">&#x03C7;&#x0304;</hi><hi rendition="#sub">010</hi>) (<hi rendition="#i">&#x03C6;</hi><hi rendition="#sub">001</hi> + <hi rendition="#i">&#x03C8;</hi><hi rendition="#sub">001</hi> + <hi rendition="#i">&#x03C7;&#x0304;</hi><hi rendition="#sub">001</hi>) (<hi rendition="#i">&#x03C6;</hi><hi rendition="#sub">000</hi> + <hi rendition="#i">&#x03C8;</hi><hi rendition="#sub">000</hi> + <hi rendition="#i">&#x03C7;&#x0304;</hi><hi rendition="#sub">000</hi>) +</hi><lb/>
+ <hi rendition="#i">x</hi><hi rendition="#sub">1</hi> <hi rendition="#i">y</hi><hi rendition="#sub">1</hi> <hi rendition="#i">z</hi><hi rendition="#sub">1</hi> (<hi rendition="#i">&#x03C6;</hi><hi rendition="#sub">111</hi> + <hi rendition="#i">&#x03C8;</hi><hi rendition="#sub">111</hi> + <hi rendition="#i">&#x03C7;</hi><hi rendition="#sub">111</hi>) (<hi rendition="#i">&#x03C6;</hi><hi rendition="#sub">110</hi> + <hi rendition="#i">&#x03C8;</hi><hi rendition="#sub">110</hi> + <hi rendition="#i">&#x03C7;</hi><hi rendition="#sub">110</hi>) (<hi rendition="#i">&#x03C6;</hi><hi rendition="#sub">101</hi> + <hi rendition="#i">&#x03C8;</hi><hi rendition="#sub">101</hi> + <hi rendition="#i">&#x03C7;</hi><hi rendition="#sub">101</hi>) (<hi rendition="#i">&#x03C6;</hi><hi rendition="#sub">100</hi> + <hi rendition="#i">&#x03C8;</hi><hi rendition="#sub">100</hi> + <hi rendition="#i">&#x03C7;</hi><hi rendition="#sub">100</hi>) ·<lb/><hi rendition="#et">· (<hi rendition="#i">&#x03C6;</hi><hi rendition="#sub">011</hi> + <hi rendition="#i">&#x03C8;</hi><hi rendition="#sub">011</hi> + <hi rendition="#i">&#x03C7;</hi><hi rendition="#sub">011</hi>) (<hi rendition="#i">&#x03C6;</hi><hi rendition="#sub">010</hi> + <hi rendition="#i">&#x03C8;</hi><hi rendition="#sub">010</hi> + <hi rendition="#i">&#x03C7;</hi><hi rendition="#sub">010</hi>) (<hi rendition="#i">&#x03C6;</hi><hi rendition="#sub">001</hi> + <hi rendition="#i">&#x03C8;</hi><hi rendition="#sub">001</hi> + <hi rendition="#i">&#x03C7;</hi><hi rendition="#sub">001</hi>) (<hi rendition="#i">&#x03C6;</hi><hi rendition="#sub">000</hi> + <hi rendition="#i">&#x03C8;</hi><hi rendition="#sub">000</hi> + <hi rendition="#i">&#x03C7;</hi><hi rendition="#sub">000</hi>).</hi></item>
            </list>
          </p><lb/>
          <p>Sei nun insbesondere:<lb/><hi rendition="#c"><hi rendition="#i">&#x03C8;</hi> (<hi rendition="#i">a</hi>, <hi rendition="#i">b</hi>, <hi rendition="#i">c</hi>) = <hi rendition="#i">&#x03C6;</hi> (<hi rendition="#i">b</hi>, <hi rendition="#i">c</hi>, <hi rendition="#i">a</hi>), <hi rendition="#i">&#x03C7;</hi> (<hi rendition="#i">a</hi>, <hi rendition="#i">b</hi>, <hi rendition="#i">c</hi>) = <hi rendition="#i">&#x03C6;</hi> (<hi rendition="#i">c</hi>, <hi rendition="#i">a</hi>, <hi rendition="#i">b</hi>),</hi><lb/>
mithin<lb/><hi rendition="#et"><hi rendition="#i">&#x03C8;</hi> (<hi rendition="#i">a</hi>, <hi rendition="#i">b</hi>, <hi rendition="#i">c</hi>) = <hi rendition="#i">&#x03C6;</hi><hi rendition="#sub">111</hi> <hi rendition="#i">a b c</hi> + <hi rendition="#i">&#x03C6;</hi><hi rendition="#sub">101</hi> <hi rendition="#i">a b c</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">&#x03C6;</hi><hi rendition="#sub">011</hi> <hi rendition="#i">a b</hi><hi rendition="#sub">1</hi> <hi rendition="#i">c</hi> + <hi rendition="#i">&#x03C6;</hi><hi rendition="#sub">001</hi> <hi rendition="#i">a b</hi><hi rendition="#sub">1</hi> <hi rendition="#i">c</hi><hi rendition="#sub">1</hi> +<lb/>
+ <hi rendition="#i">&#x03C6;</hi><hi rendition="#sub">110</hi> <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> <hi rendition="#i">b c</hi> + <hi rendition="#i">&#x03C6;</hi><hi rendition="#sub">100</hi> <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> <hi rendition="#i">b c</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">&#x03C6;</hi><hi rendition="#sub">010</hi> <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> <hi rendition="#i">c</hi> + <hi rendition="#i">&#x03C6;</hi><hi rendition="#sub">000</hi> <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>,<lb/><hi rendition="#i">&#x03C7;</hi> (<hi rendition="#i">a</hi>, <hi rendition="#i">b</hi>, <hi rendition="#i">c</hi>) = <hi rendition="#i">&#x03C6;</hi><hi rendition="#sub">111</hi> <hi rendition="#i">a b c</hi> + <hi rendition="#i">&#x03C6;</hi><hi rendition="#sub">011</hi> <hi rendition="#i">a b c</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">&#x03C6;</hi><hi rendition="#sub">110</hi> <hi rendition="#i">a b</hi><hi rendition="#sub">1</hi> <hi rendition="#i">c</hi> + <hi rendition="#i">&#x03C6;</hi><hi rendition="#sub">010</hi> <hi rendition="#i">a b</hi><hi rendition="#sub">1</hi> <hi rendition="#i">c</hi><hi rendition="#sub">1</hi> +<lb/>
+ <hi rendition="#i">&#x03C6;</hi><hi rendition="#sub">101</hi> <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> <hi rendition="#i">b c</hi> + <hi rendition="#i">&#x03C6;</hi><hi rendition="#sub">001</hi> <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> <hi rendition="#i">b c</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">&#x03C6;</hi><hi rendition="#sub">100</hi> <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> <hi rendition="#i">c</hi> + <hi rendition="#i">&#x03C6;</hi><hi rendition="#sub">000</hi> <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>,</hi><lb/>
oder also:<lb/><hi rendition="#c"><hi rendition="#i">&#x03C8;</hi><hi rendition="#sub">111</hi> = <hi rendition="#i">&#x03C6;</hi><hi rendition="#sub">111</hi>, <hi rendition="#i">&#x03C8;</hi><hi rendition="#sub">110</hi> = <hi rendition="#i">&#x03C6;</hi><hi rendition="#sub">101</hi>, <hi rendition="#i">&#x03C8;</hi><hi rendition="#sub">101</hi> = <hi rendition="#i">&#x03C6;</hi><hi rendition="#sub">011</hi>, <hi rendition="#i">&#x03C8;</hi><hi rendition="#sub">100</hi> = <hi rendition="#i">&#x03C6;</hi><hi rendition="#sub">001</hi>,<lb/><hi rendition="#i">&#x03C8;</hi><hi rendition="#sub">011</hi> = <hi rendition="#i">&#x03C6;</hi><hi rendition="#sub">110</hi>, <hi rendition="#i">&#x03C8;</hi><hi rendition="#sub">010</hi> = <hi rendition="#i">&#x03C6;</hi><hi rendition="#sub">100</hi>, <hi rendition="#i">&#x03C8;</hi><hi rendition="#sub">001</hi> = <hi rendition="#i">&#x03C6;</hi><hi rendition="#sub">010</hi>, <hi rendition="#i">&#x03C8;</hi><hi rendition="#sub">000</hi> = <hi rendition="#i">&#x03C6;</hi><hi rendition="#sub">000</hi>,<lb/><hi rendition="#i">&#x03C7;</hi><hi rendition="#sub">111</hi> = <hi rendition="#i">&#x03C6;</hi><hi rendition="#sub">111</hi>, <hi rendition="#i">&#x03C7;</hi><hi rendition="#sub">110</hi> = <hi rendition="#i">&#x03C6;</hi><hi rendition="#sub">011</hi>, <hi rendition="#i">&#x03C7;</hi><hi rendition="#sub">101</hi> = <hi rendition="#i">&#x03C6;</hi><hi rendition="#sub">110</hi>, <hi rendition="#i">&#x03C7;</hi><hi rendition="#sub">100</hi> = <hi rendition="#i">&#x03C6;</hi><hi rendition="#sub">010</hi>,<lb/><hi rendition="#i">&#x03C7;</hi><hi rendition="#sub">011</hi> = <hi rendition="#i">&#x03C6;</hi><hi rendition="#sub">101</hi>, <hi rendition="#i">&#x03C7;</hi><hi rendition="#sub">010</hi> = <hi rendition="#i">&#x03C6;</hi><hi rendition="#sub">001</hi>, <hi rendition="#i">&#x03C7;</hi><hi rendition="#sub">001</hi> = <hi rendition="#i">&#x03C6;</hi><hi rendition="#sub">100</hi>, <hi rendition="#i">&#x03C7;</hi><hi rendition="#sub">000</hi> = <hi rendition="#i">&#x03C6;</hi><hi rendition="#sub">000</hi>,</hi><lb/>
desgleichen mit übergesetzten Horizontalstrichen, so erhalten wir durch<lb/>
diese Einsetzungen als die Resultante der Elimination von <hi rendition="#i">a</hi>, <hi rendition="#i">b</hi>, <hi rendition="#i">c</hi> aus den<lb/>
drei Gleichungen:<lb/><hi rendition="#c"><hi rendition="#i">x</hi> = <hi rendition="#i">&#x03C6;</hi> (<hi rendition="#i">a</hi>, <hi rendition="#i">b</hi>, <hi rendition="#i">c</hi>) <hi rendition="#i">y</hi> = <hi rendition="#i">&#x03C6;</hi> (<hi rendition="#i">b</hi>, <hi rendition="#i">c</hi>, <hi rendition="#i">a</hi>), <hi rendition="#i">z</hi> = <hi rendition="#i">&#x03C6;</hi> (<hi rendition="#i">c</hi>, <hi rendition="#i">a</hi>, <hi rendition="#i">b</hi>)</hi><lb/>
die nachstehende Gleichung:<lb/></p>
        </div>
      </div>
    </body>
  </text>
</TEI>
[697/0717] Zur Gruppentheorie des identischen Kalkuls. 0 = x y z (φ̄111 + ψ̄111 + χ̄111) (φ̄110 + ψ̄110 + χ̄110) (φ̄101 + ψ̄101 + χ̄101) (φ̄100 + ψ̄100 + χ̄100) · · (φ̄011 + ψ̄011 + χ̄011) (φ̄010 + ψ̄010 + χ̄010) (φ̄001 + ψ̄001 + χ̄001) (φ̄000 + ψ̄000 + χ̄000) + + x y z1 (φ̄111 + ψ̄111 + χ111) (φ̄110 + ψ̄110 + χ110) (φ̄101 + ψ̄101 + χ101) (φ̄100 + ψ̄100 + χ100) · · (φ̄011 + ψ̄011 + χ011) (φ̄010 + ψ̄010 + χ010) (φ̄001 + ψ̄001 + χ001) (φ̄000 + ψ̄000 + χ000) + + x y1 z (φ̄111 + ψ111 + χ̄111) (φ̄110 + ψ110 + χ̄110) (φ̄101 + ψ101 + χ̄101) (φ̄100 + ψ100 + χ̄100) · · (φ̄011 + ψ011 + χ̄011) (φ̄010 + ψ010 + χ̄010) (φ̄001 + ψ001 + χ̄001) (φ̄000 + ψ000 + χ̄000) + + x y1 z1 (φ̄111 + ψ111 + χ111) (φ̄110 + ψ110 + χ110) (φ̄101 + ψ101 + χ101) (φ̄100 + ψ100 + χ100) · · (φ̄011 + ψ011 + χ011) (φ̄010 + ψ010 + χ010) (φ̄001 + ψ001 + χ001) (φ̄000 + ψ000 + χ000) + + x1 y z (φ111 + ψ̄111 + χ̄111) (φ110 + ψ̄110 + χ̄110) (φ101 + ψ̄101 + χ̄101) (φ100 + ψ̄100 + χ̄100) · · (φ011 + ψ̄011 + χ̄011) (φ010 + ψ̄010 + χ̄010) (φ001 + ψ̄001 + χ̄001) (φ000 + ψ̄000 + χ̄000) + + x1 y z1 (φ111 + ψ̄111 + χ111) (φ110 + ψ̄110 + χ110) (φ101 + ψ̄101 + χ101) (φ100 + ψ̄100 + χ100) · · (φ011 + ψ̄011 + χ011) (φ010 + ψ̄010 + χ010) (φ001 + ψ̄001 + χ001) (φ000 + ψ̄000 + χ000) + + x1 y1 z (φ111 + ψ111 + χ̄111) (φ110 + ψ110 + χ̄110) (φ101 + ψ101 + χ̄101) (φ100 + ψ100 + χ̄100) · · (φ011 + ψ011 + χ̄011) (φ010 + ψ010 + χ̄010) (φ001 + ψ001 + χ̄001) (φ000 + ψ000 + χ̄000) + + x1 y1 z1 (φ111 + ψ111 + χ111) (φ110 + ψ110 + χ110) (φ101 + ψ101 + χ101) (φ100 + ψ100 + χ100) · · (φ011 + ψ011 + χ011) (φ010 + ψ010 + χ010) (φ001 + ψ001 + χ001) (φ000 + ψ000 + χ000). Sei nun insbesondere: ψ (a, b, c) = φ (b, c, a), χ (a, b, c) = φ (c, a, b), mithin ψ (a, b, c) = φ111 a b c + φ101 a b c1 + φ011 a b1 c + φ001 a b1 c1 + + φ110 a1 b c + φ100 a1 b c1 + φ010 a1 b1 c + φ000 a1 b1 c1, χ (a, b, c) = φ111 a b c + φ011 a b c1 + φ110 a b1 c + φ010 a b1 c1 + + φ101 a1 b c + φ001 a1 b c1 + φ100 a1 b1 c + φ000 a1 b1 c1, oder also: ψ111 = φ111, ψ110 = φ101, ψ101 = φ011, ψ100 = φ001, ψ011 = φ110, ψ010 = φ100, ψ001 = φ010, ψ000 = φ000, χ111 = φ111, χ110 = φ011, χ101 = φ110, χ100 = φ010, χ011 = φ101, χ010 = φ001, χ001 = φ100, χ000 = φ000, desgleichen mit übergesetzten Horizontalstrichen, so erhalten wir durch diese Einsetzungen als die Resultante der Elimination von a, b, c aus den drei Gleichungen: x = φ (a, b, c) y = φ (b, c, a), z = φ (c, a, b) die nachstehende Gleichung:

Suche im Werk

Hilfe

Informationen zum Werk

Download dieses Werks

XML (TEI P5) · HTML · Text
TCF (text annotation layer)
XML (TEI P5 inkl. att.linguistic)

Metadaten zum Werk

TEI-Header · CMDI · Dublin Core

Ansichten dieser Seite

Voyant Tools ?

Language Resource Switchboard?

Feedback

Sie haben einen Fehler gefunden? Dann können Sie diesen über unsere Qualitätssicherungsplattform DTAQ melden.

Kommentar zur DTA-Ausgabe

Dieses Werk wurde gemäß den DTA-Transkriptionsrichtlinien im Double-Keying-Verfahren von Nicht-Muttersprachlern erfasst und in XML/TEI P5 nach DTA-Basisformat kodiert.




Ansicht auf Standard zurückstellen

URL zu diesem Werk: https://www.deutschestextarchiv.de/schroeder_logik01_1890
URL zu dieser Seite: https://www.deutschestextarchiv.de/schroeder_logik01_1890/717
Zitationshilfe: Schröder, Ernst: Vorlesungen über die Algebra der Logik. Bd. 1. Leipzig, 1890, S. 697. In: Deutsches Textarchiv <https://www.deutschestextarchiv.de/schroeder_logik01_1890/717>, abgerufen am 24.11.2024.