Wolff, Christian von: Der Anfangs-Gründe Aller Mathematischen Wiessenschaften. Bd. 4. Halle (Saale), 1710.Anfangs-Gründe gegen gesetzt werden/ das ist/ wenn derPunct/ wovon die Abscissen gerechnet wer- den/ zur Lincken der Semiordinate ist/ so wird die Subtangens auf der Axe zu ihrer Rech- ten genommen. Der 12. Zusatz. 424. Für unendliche Hyperbeln zwischen Der 13. Zusatz. 425. Endlich weil für alle Algebraische Li- PT
Anfangs-Gruͤnde gegen geſetzt werden/ das iſt/ wenn derPunct/ wovon die Abſciſſen gerechnet wer- den/ zur Lincken der Semiordinate iſt/ ſo wird die Subtangens auf der Axe zu ihrer Rech- ten genommen. Der 12. Zuſatz. 424. Fuͤr unendliche Hyperbeln zwiſchen Der 13. Zuſatz. 425. Endlich weil fuͤr alle Algebraiſche Li- PT
<TEI> <text> <body> <div n="1"> <div n="2"> <div n="3"> <div n="4"> <div n="5"> <p><pb facs="#f0258" n="256"/><fw place="top" type="header"><hi rendition="#b">Anfangs-Gruͤnde</hi></fw><lb/> gegen geſetzt werden/ das iſt/ wenn der<lb/> Punct/ wovon die Abſciſſen gerechnet wer-<lb/> den/ zur Lincken der Semiordinate iſt/ ſo wird<lb/> die Subtangens auf der Axe zu ihrer Rech-<lb/> ten genommen.</p> </div><lb/> <div n="5"> <head> <hi rendition="#b">Der 12. Zuſatz.</hi> </head><lb/> <p>424. Fuͤr unendliche Hyperbeln zwiſchen<lb/> ihren Aſymptoten iſt <hi rendition="#u"><hi rendition="#aq"><hi rendition="#i">a</hi><hi rendition="#sup"><hi rendition="#i">m+n</hi></hi> = <hi rendition="#i">y</hi>x<hi rendition="#sup"><hi rendition="#i">n</hi></hi></hi> (§. 266)</hi><lb/><hi rendition="#et">Daher <hi rendition="#aq"><hi rendition="#u"><hi rendition="#i">o</hi> = <hi rendition="#i">m</hi>x<hi rendition="#sup"><hi rendition="#i">n</hi></hi><hi rendition="#i">y</hi><hi rendition="#sup"><hi rendition="#i">m</hi>-1</hi> <hi rendition="#i">dy+n</hi>x<hi rendition="#sup"><hi rendition="#i">n</hi>-1</hi><hi rendition="#i">y</hi><hi rendition="#sup"><hi rendition="#i">m</hi></hi><hi rendition="#i">d</hi>x<lb/> -<hi rendition="#i">m</hi>x<hi rendition="#sup"><hi rendition="#i">n</hi></hi><hi rendition="#i">y</hi><hi rendition="#sup"><hi rendition="#i">m</hi>-1</hi><hi rendition="#i">dy</hi> : <hi rendition="#i">n</hi>x<hi rendition="#sup"><hi rendition="#i">n</hi> 1</hi><hi rendition="#i">y</hi><hi rendition="#sup"><hi rendition="#i">m</hi></hi> = <hi rendition="#i">d</hi>x</hi></hi></hi><lb/><hi rendition="#aq">PT = y<hi rendition="#i">d</hi>x : <hi rendition="#i">d</hi>y = - <hi rendition="#i">m</hi>x<hi rendition="#sup"><hi rendition="#i">n</hi></hi>y<hi rendition="#sup"><hi rendition="#i">m</hi></hi> : <hi rendition="#i">n</hi>x<hi rendition="#sup"><hi rendition="#i">n</hi></hi>-1 y<hi rendition="#sup"><hi rendition="#i">m</hi></hi> = -<lb/><hi rendition="#et"><hi rendition="#i">m</hi>x : <hi rendition="#i">n.</hi></hi></hi><lb/> Es ſey eine Hyperbel von dem andern Ge-<lb/> ſchlechte/ ſo iſt <hi rendition="#aq"><hi rendition="#i">m</hi> = 2/ <hi rendition="#i">n</hi> = 1/ PT = -2x.</hi></p> </div><lb/> <div n="5"> <head> <hi rendition="#b">Der 13. Zuſatz.</hi> </head><lb/> <p>425. Endlich weil fuͤr alle Algebraiſche Li-<lb/> nien<lb/><hi rendition="#aq"><hi rendition="#u"><hi rendition="#i">a</hi>y<hi rendition="#sup"><hi rendition="#i">m</hi></hi> + <hi rendition="#i">b</hi>x<hi rendition="#sup"><hi rendition="#i">n</hi></hi> + <hi rendition="#i">c</hi>y<hi rendition="#sup"><hi rendition="#i">r</hi></hi>x<hi rendition="#sup"><hi rendition="#i">ſ</hi></hi> + <hi rendition="#i">f</hi> = <hi rendition="#i">o/</hi></hi></hi> ſo iſt<lb/><hi rendition="#aq"><hi rendition="#i">ma</hi>y<hi rendition="#sup"><hi rendition="#i">m</hi>-1</hi><hi rendition="#i">d</hi>y + <hi rendition="#i">nb</hi>x<hi rendition="#sup"><hi rendition="#i">n</hi>-1</hi><hi rendition="#i">dx + rc</hi>y<hi rendition="#sup"><hi rendition="#i">r</hi>-1</hi>x<hi rendition="#sup"><hi rendition="#i">ſ</hi></hi><hi rendition="#i">d</hi>y + <hi rendition="#i">ſc</hi>y<hi rendition="#sup"><hi rendition="#i">r</hi></hi>x<hi rendition="#sup"><hi rendition="#i">ſ</hi>-1</hi><lb/><hi rendition="#et"><hi rendition="#u"><hi rendition="#i">d</hi>x = <hi rendition="#i">o</hi></hi></hi><lb/><hi rendition="#i">nbx</hi><hi rendition="#sup"><hi rendition="#i">n</hi>-1</hi><hi rendition="#i">d</hi>x + <hi rendition="#i">ſc</hi>y<hi rendition="#sup"><hi rendition="#i">r</hi></hi>x<hi rendition="#sup"><hi rendition="#i">ſ</hi>-1</hi><hi rendition="#i">dx = -ma</hi>y<hi rendition="#sup"><hi rendition="#i">m</hi>-1</hi><hi rendition="#i">d</hi>y-<hi rendition="#i">rc</hi>y<hi rendition="#sup"><hi rendition="#i">r</hi>-1</hi><lb/><hi rendition="#et"><hi rendition="#u">x<hi rendition="#sup"><hi rendition="#i">ſ</hi></hi><hi rendition="#i">d</hi>y</hi></hi><lb/><hi rendition="#i">d</hi>x = (-<hi rendition="#i">ma</hi>y<hi rendition="#sup"><hi rendition="#i">m</hi>-1</hi><hi rendition="#i">d</hi>y-<hi rendition="#i">rc</hi>y<hi rendition="#sup"><hi rendition="#i">r</hi>-1</hi>x<hi rendition="#sup"><hi rendition="#i">ſ</hi></hi><hi rendition="#i">d</hi>y) : (<hi rendition="#i">nb</hi>x<hi rendition="#sup"><hi rendition="#i">n</hi>-1</hi> +<lb/><hi rendition="#et"><hi rendition="#u"><hi rendition="#i">ſc</hi>y<hi rendition="#sup"><hi rendition="#i">r</hi></hi>x<hi rendition="#sup"><hi rendition="#i">ſ</hi>-1</hi>)</hi></hi></hi><lb/> <fw place="bottom" type="catch"><hi rendition="#aq">PT</hi></fw><lb/></p> </div> </div> </div> </div> </div> </body> </text> </TEI> [256/0258]
Anfangs-Gruͤnde
gegen geſetzt werden/ das iſt/ wenn der
Punct/ wovon die Abſciſſen gerechnet wer-
den/ zur Lincken der Semiordinate iſt/ ſo wird
die Subtangens auf der Axe zu ihrer Rech-
ten genommen.
Der 12. Zuſatz.
424. Fuͤr unendliche Hyperbeln zwiſchen
ihren Aſymptoten iſt am+n = yxn (§. 266)
Daher o = mxnym-1 dy+nxn-1ymdx
-mxnym-1dy : nxn 1ym = dx
PT = ydx : dy = - mxnym : nxn-1 ym = -
mx : n.
Es ſey eine Hyperbel von dem andern Ge-
ſchlechte/ ſo iſt m = 2/ n = 1/ PT = -2x.
Der 13. Zuſatz.
425. Endlich weil fuͤr alle Algebraiſche Li-
nien
aym + bxn + cyrxſ + f = o/ ſo iſt
maym-1 dy + nbxn-1 dx + rcyr-1xſ dy + ſcyrxſ-1
dx = o
nbxn-1 dx + ſcyrxſ-1 dx = -maym-1dy-rcyr-1
xſdy
dx = (-maym-1 dy-rcyr-1xſdy) : (nbxn-1 +
ſcyrxſ-1)
PT
Suche im WerkInformationen zum Werk
Download dieses Werks
XML (TEI P5) ·
HTML ·
Text Metadaten zum WerkTEI-Header · CMDI · Dublin Core Ansichten dieser Seite
Voyant Tools
|
URL zu diesem Werk: | https://www.deutschestextarchiv.de/wolff_anfangsgruende04_1710 |
URL zu dieser Seite: | https://www.deutschestextarchiv.de/wolff_anfangsgruende04_1710/258 |
Zitationshilfe: | Wolff, Christian von: Der Anfangs-Gründe Aller Mathematischen Wiessenschaften. Bd. 4. Halle (Saale), 1710. , S. 256. In: Deutsches Textarchiv <https://www.deutschestextarchiv.de/wolff_anfangsgruende04_1710/258>, abgerufen am 18.02.2025. |