Brandes, Heinrich Wilhelm: Vorlesungen über die Naturlehre. Bd. 1. Leipzig, 1830.Diese Art, die Betrachtung anzustellen, so als ob die eine Die beiden zuletzt angeführten Eigenschaften der Wurflinie Wenn man den Wurf sehr nahe vertical richtet, so ist offen- Dieſe Art, die Betrachtung anzuſtellen, ſo als ob die eine Die beiden zuletzt angefuͤhrten Eigenſchaften der Wurflinie Wenn man den Wurf ſehr nahe vertical richtet, ſo iſt offen- <TEI> <text> <body> <div n="1"> <div n="2"> <pb facs="#f0099" n="77"/> <p>Dieſe Art, die Betrachtung anzuſtellen, ſo als ob die eine<lb/> der beiden Urſachen fuͤr ſich allein wirkend zu der Wirkung der an-<lb/> dern hinzutraͤte, iſt hier beſonders darum ſo leicht, weil die Rich-<lb/> tungen der Schwere in allen Puncten, die ein von uns geworfe-<lb/> ner Koͤrper erreicht, unter ſich parallel ſind. Sie fuͤhrt aber zu-<lb/> gleich noch zu einigen einfachen Folgerungen. Erſtlich, wenn ich<lb/> auf der horizontalen Ebne (<hi rendition="#aq"><hi rendition="#b">Fig. 50.</hi></hi>) <hi rendition="#aq"><hi rendition="#b">AH</hi></hi> ſo fortgehe, daß der ge-<lb/> worfne Koͤrper immer genau uͤber mir ſchweben wuͤrde, wenn keine<lb/> Schwere wirkte, ſo thut er das auch, obgleich die Schwere ein-<lb/> wirkt, nur mit dem Unterſchiede, daß er mir in der Verticallinie<lb/> naͤher koͤmmt und mich endlich irgendwo in <hi rendition="#aq"><hi rendition="#b">l</hi></hi> erreicht. Zweitens,<lb/> wenn man vom hoͤchſten Puncte der Bahn eines geworfnen Koͤr-<lb/> pers eine horizontale Linie <hi rendition="#aq"><hi rendition="#b">LM</hi></hi> zieht, und auf ihr gleiche Theile<lb/> auftraͤgt, <hi rendition="#aq"><hi rendition="#b">LN, NO, OP,</hi></hi> ſo iſt der Koͤrper in <hi rendition="#aq"><hi rendition="#b">f</hi></hi> viermal ſo tief<lb/> unter <hi rendition="#aq"><hi rendition="#b">O,</hi></hi> als er in <hi rendition="#aq"><hi rendition="#b">e</hi></hi> unter <hi rendition="#aq"><hi rendition="#b">N</hi></hi> war, und in <hi rendition="#aq"><hi rendition="#b">p</hi></hi> 9 mal ſo tief unter<lb/><hi rendition="#aq"><hi rendition="#b">P,</hi></hi> als er in <hi rendition="#aq"><hi rendition="#b">e</hi></hi> unter <hi rendition="#aq"><hi rendition="#b">N</hi></hi> war; es ſind naͤmlich <hi rendition="#aq"><hi rendition="#b">eN, fO, pP</hi></hi> die<lb/> Fallraͤume in 1, in 2, in 3 gleichen Zeittheilen. Drittens der<lb/> Gipfel oder der hoͤchſte Punct der Wurflinie liegt genau halb ſo<lb/> hoch, als der Punct <hi rendition="#aq"><hi rendition="#b">Z,</hi></hi> den der Koͤrper ohne Einwirkung der<lb/> Schwere in eben der Zeit, in welcher er wirklich nach <hi rendition="#aq"><hi rendition="#b">L</hi></hi> koͤmmt,<lb/> erreicht haͤtte. Dies haͤngt mit der bei verticalem Wurfe erreichten<lb/> groͤßten Hoͤhe zuſammen, die in 50 Sec. 75000 Fuß geweſen<lb/> waͤre, wenn die anfaͤngliche Geſchwindigkeit = 1500 Fuß unge-<lb/> aͤndert fortgedauert haͤtte, aber nur halb ſo groß = 37500 Fuß<lb/> iſt wegen der Einwirkung der Schwere, welche die Geſchwindigkeit<lb/><hi rendition="#g">gleichfoͤrmig</hi> von 1500 Fuß auf Null herabſetzt, und daher<lb/> den Koͤrper nur eine Hoͤhe erreichen laͤßt, die der zwiſchen 0 und<lb/> 1500 in der Mitte liegenden Geſchwindigkeit entſpricht.</p><lb/> <p>Die beiden zuletzt angefuͤhrten Eigenſchaften der Wurflinie<lb/> zeigen dem Geometer, daß dieſe Linie eine <hi rendition="#g">Parabel</hi> iſt, die naͤm-<lb/> lich die beiden Eigenſchaften hat, daß in jedem Puncte die Tiefe<lb/><hi rendition="#aq"><hi rendition="#b">Pp</hi></hi> dem Quadrate von <hi rendition="#aq"><hi rendition="#b">LP</hi></hi> proportional iſt, und daß jede Tan-<lb/> gente <hi rendition="#aq"><hi rendition="#b">AZ</hi></hi> ebenſohoch uͤber dem Scheitel in die Axe einſchneidet,<lb/> als der Beruͤhrungspunct <hi rendition="#aq"><hi rendition="#b">A</hi></hi> unterhalb des Scheitels <hi rendition="#aq"><hi rendition="#b">L</hi></hi> liegt.</p><lb/> <p>Wenn man den Wurf ſehr nahe vertical richtet, ſo iſt offen-<lb/> bar die horizontale Wurfweite <hi rendition="#aq"><hi rendition="#b">AB</hi></hi> geringe (<hi rendition="#aq"><hi rendition="#b">Fig. 51.</hi></hi>) wegen der<lb/> zu großen Hoͤhe der Parabel <hi rendition="#aq"><hi rendition="#b">AZB;</hi></hi> aber auch wenn man den Wurf<lb/></p> </div> </div> </body> </text> </TEI> [77/0099]
Dieſe Art, die Betrachtung anzuſtellen, ſo als ob die eine
der beiden Urſachen fuͤr ſich allein wirkend zu der Wirkung der an-
dern hinzutraͤte, iſt hier beſonders darum ſo leicht, weil die Rich-
tungen der Schwere in allen Puncten, die ein von uns geworfe-
ner Koͤrper erreicht, unter ſich parallel ſind. Sie fuͤhrt aber zu-
gleich noch zu einigen einfachen Folgerungen. Erſtlich, wenn ich
auf der horizontalen Ebne (Fig. 50.) AH ſo fortgehe, daß der ge-
worfne Koͤrper immer genau uͤber mir ſchweben wuͤrde, wenn keine
Schwere wirkte, ſo thut er das auch, obgleich die Schwere ein-
wirkt, nur mit dem Unterſchiede, daß er mir in der Verticallinie
naͤher koͤmmt und mich endlich irgendwo in l erreicht. Zweitens,
wenn man vom hoͤchſten Puncte der Bahn eines geworfnen Koͤr-
pers eine horizontale Linie LM zieht, und auf ihr gleiche Theile
auftraͤgt, LN, NO, OP, ſo iſt der Koͤrper in f viermal ſo tief
unter O, als er in e unter N war, und in p 9 mal ſo tief unter
P, als er in e unter N war; es ſind naͤmlich eN, fO, pP die
Fallraͤume in 1, in 2, in 3 gleichen Zeittheilen. Drittens der
Gipfel oder der hoͤchſte Punct der Wurflinie liegt genau halb ſo
hoch, als der Punct Z, den der Koͤrper ohne Einwirkung der
Schwere in eben der Zeit, in welcher er wirklich nach L koͤmmt,
erreicht haͤtte. Dies haͤngt mit der bei verticalem Wurfe erreichten
groͤßten Hoͤhe zuſammen, die in 50 Sec. 75000 Fuß geweſen
waͤre, wenn die anfaͤngliche Geſchwindigkeit = 1500 Fuß unge-
aͤndert fortgedauert haͤtte, aber nur halb ſo groß = 37500 Fuß
iſt wegen der Einwirkung der Schwere, welche die Geſchwindigkeit
gleichfoͤrmig von 1500 Fuß auf Null herabſetzt, und daher
den Koͤrper nur eine Hoͤhe erreichen laͤßt, die der zwiſchen 0 und
1500 in der Mitte liegenden Geſchwindigkeit entſpricht.
Die beiden zuletzt angefuͤhrten Eigenſchaften der Wurflinie
zeigen dem Geometer, daß dieſe Linie eine Parabel iſt, die naͤm-
lich die beiden Eigenſchaften hat, daß in jedem Puncte die Tiefe
Pp dem Quadrate von LP proportional iſt, und daß jede Tan-
gente AZ ebenſohoch uͤber dem Scheitel in die Axe einſchneidet,
als der Beruͤhrungspunct A unterhalb des Scheitels L liegt.
Wenn man den Wurf ſehr nahe vertical richtet, ſo iſt offen-
bar die horizontale Wurfweite AB geringe (Fig. 51.) wegen der
zu großen Hoͤhe der Parabel AZB; aber auch wenn man den Wurf
Suche im WerkInformationen zum Werk
Download dieses Werks
XML (TEI P5) ·
HTML ·
Text Metadaten zum WerkTEI-Header · CMDI · Dublin Core Ansichten dieser Seite
Voyant Tools ?Language Resource Switchboard?FeedbackSie haben einen Fehler gefunden? Dann können Sie diesen über unsere Qualitätssicherungsplattform DTAQ melden. Kommentar zur DTA-AusgabeDieses Werk wurde gemäß den DTA-Transkriptionsrichtlinien im Double-Keying-Verfahren von Muttersprachlern erfasst und in XML/TEI P5 nach DTA-Basisformat kodiert.
|
Insbesondere im Hinblick auf die §§ 86a StGB und 130 StGB wird festgestellt, dass die auf diesen Seiten abgebildeten Inhalte weder in irgendeiner Form propagandistischen Zwecken dienen, oder Werbung für verbotene Organisationen oder Vereinigungen darstellen, oder nationalsozialistische Verbrechen leugnen oder verharmlosen, noch zum Zwecke der Herabwürdigung der Menschenwürde gezeigt werden. Die auf diesen Seiten abgebildeten Inhalte (in Wort und Bild) dienen im Sinne des § 86 StGB Abs. 3 ausschließlich historischen, sozial- oder kulturwissenschaftlichen Forschungszwecken. Ihre Veröffentlichung erfolgt in der Absicht, Wissen zur Anregung der intellektuellen Selbstständigkeit und Verantwortungsbereitschaft des Staatsbürgers zu vermitteln und damit der Förderung seiner Mündigkeit zu dienen.
2007–2024 Deutsches Textarchiv, Berlin-Brandenburgische Akademie der Wissenschaften.
Kontakt: redaktion(at)deutschestextarchiv.de. |