Gehler, Johann Samuel Traugott: Physikalisches Wörterbuch, oder, Versuch einer Erklärung der vornehmsten Begriffe und Kunstwörter der Naturlehre. Bd. 3. Leipzig, 1798.
Man sieht auch, daß die Welle A und das Rad S keiner Zähne bedürfen, daß sogar das Rad S ganz wegbleiben und statt dessen nur ein Arm oder eine Kurbel CM da seyn kan, an der K senkrecht wirkt. Ich will die drey Räder durch die Buchstaben Q, R, S, und ihre Halbmesser durch q, r, s; die drey Wellen durch A, B, C, und ihre Halbmesser durch a, b, c bezeichnen. Unter den Wellen sind eigentlich nur B und C Getriebe oder mit Erhöhungen (Triebstöcken) versehen; ich verstatte mir aber der Kürze halber alle drey Getriebe zu nennen. Die entgegengesetzten Kräfte K und L werden im Gleichgewichte seyn, wenn sich K zu L verhält, wie das Product aller Halbmesser der Getriebe, zu dem Producte aller Halbmesser der Räder. Denn wirkte eine Kraft l am Umfange des Rades Q, so müßte sie, um L zu erhalten, zu L selbst im Verhältnisse der Halbmesser von A und Q, d. i. im Verhältnisse a:q seyn, s. Rad an der Welle. Mit einer diesem l gleichen Gewalt wird also der Triebstock von B, der dem Zahne des Rades Q im Wege steht, von L gedrückt. Es ist daher so viel, als wäre L gar nicht da, aber an B wirkte die Last l Soll nun diese durch eine Kraft l am Umfange des Rades R gerade erhalten werden, so muß wiederum l zu l im Verhältnisse der Halbmesser b und r seyn. Mit einer diesem l gleichen Gewalt drückt der Zahn des Rades R gegen den ihn berührenden Triebstock von C; daher es so viel ist, als wäre auch l gar nicht da, aber an C wirkte die Last l. Soll nun diese durch die Kraft K am Umfange von S erhalten werden, so
Man ſieht auch, daß die Welle A und das Rad S keiner Zaͤhne beduͤrfen, daß ſogar das Rad S ganz wegbleiben und ſtatt deſſen nur ein Arm oder eine Kurbel CM da ſeyn kan, an der K ſenkrecht wirkt. Ich will die drey Raͤder durch die Buchſtaben Q, R, S, und ihre Halbmeſſer durch q, r, s; die drey Wellen durch A, B, C, und ihre Halbmeſſer durch a, b, c bezeichnen. Unter den Wellen ſind eigentlich nur B und C Getriebe oder mit Erhoͤhungen (Triebſtoͤcken) verſehen; ich verſtatte mir aber der Kuͤrze halber alle drey Getriebe zu nennen. Die entgegengeſetzten Kraͤfte K und L werden im Gleichgewichte ſeyn, wenn ſich K zu L verhaͤlt, wie das Product aller Halbmeſſer der Getriebe, zu dem Producte aller Halbmeſſer der Raͤder. Denn wirkte eine Kraft l am Umfange des Rades Q, ſo muͤßte ſie, um L zu erhalten, zu L ſelbſt im Verhaͤltniſſe der Halbmeſſer von A und Q, d. i. im Verhaͤltniſſe a:q ſeyn, ſ. Rad an der Welle. Mit einer dieſem l gleichen Gewalt wird alſo der Triebſtock von B, der dem Zahne des Rades Q im Wege ſteht, von L gedruͤckt. Es iſt daher ſo viel, als waͤre L gar nicht da, aber an B wirkte die Laſt l Soll nun dieſe durch eine Kraft λ am Umfange des Rades R gerade erhalten werden, ſo muß wiederum λ zu l im Verhaͤltniſſe der Halbmeſſer b und r ſeyn. Mit einer dieſem λ gleichen Gewalt druͤckt der Zahn des Rades R gegen den ihn beruͤhrenden Triebſtock von C; daher es ſo viel iſt, als waͤre auch l gar nicht da, aber an C wirkte die Laſt λ. Soll nun dieſe durch die Kraft K am Umfange von S erhalten werden, ſo <TEI> <text> <body> <div n="1"> <div n="2"> <div n="3"> <p><pb facs="#f0635" xml:id="P.3.629" n="629"/><lb/> zugleich die Welle des Rades <hi rendition="#aq">R,</hi> welches mit ſeinen Zaͤhnen in das Getriebe <hi rendition="#aq">C</hi> greift. Dieſes letzte Getriebe iſt die Welle des Rades <hi rendition="#aq">S,</hi> an deſſen Umfange die Kraft <hi rendition="#aq">K</hi> nach der Richtung der Tangente <hi rendition="#aq">MK</hi> wirkt. Auf dieſe Art wirken <hi rendition="#aq">K</hi> und <hi rendition="#aq">L</hi> einander entgegen. Denn man darf nur mit aufmerkſamer Betrachtung der Figur unterſuchen, wie ſich die Raͤder und Getriebe drehen muͤſſen, wenn <hi rendition="#aq">K</hi> weiter fortgeht, ſo wird man finden, daß dabey der Punkt der Welle <hi rendition="#aq">A,</hi> an dem <hi rendition="#aq">L</hi> haͤngt, aufwaͤrts gehen, und <hi rendition="#aq">L</hi> erheben oder naͤher heranziehen muß.</p> <p>Man ſieht auch, daß die Welle <hi rendition="#aq">A</hi> und das Rad <hi rendition="#aq">S</hi> keiner Zaͤhne beduͤrfen, daß ſogar das Rad <hi rendition="#aq">S</hi> ganz wegbleiben und ſtatt deſſen nur ein Arm oder eine Kurbel <hi rendition="#aq">CM</hi> da ſeyn kan, an der <hi rendition="#aq">K</hi> ſenkrecht wirkt. Ich will die drey Raͤder durch die Buchſtaben <hi rendition="#aq">Q, R, S,</hi> und ihre Halbmeſſer durch <hi rendition="#aq">q, r, s;</hi> die drey Wellen durch <hi rendition="#aq">A, B, C,</hi> und ihre Halbmeſſer durch <hi rendition="#aq">a, b, c</hi> bezeichnen. Unter den Wellen ſind eigentlich nur <hi rendition="#aq">B</hi> und <hi rendition="#aq">C</hi> <hi rendition="#b">Getriebe</hi> oder mit Erhoͤhungen (Triebſtoͤcken) verſehen; ich verſtatte mir aber der Kuͤrze halber alle drey Getriebe zu nennen.</p> <p>Die entgegengeſetzten Kraͤfte <hi rendition="#aq">K</hi> und <hi rendition="#aq">L</hi> werden im Gleichgewichte ſeyn, <hi rendition="#b">wenn ſich</hi> <hi rendition="#aq">K</hi> <hi rendition="#b">zu</hi> <hi rendition="#aq">L</hi> <hi rendition="#b">verhaͤlt, wie das Product aller Halbmeſſer der Getriebe, zu dem Producte aller Halbmeſſer der Raͤder.</hi> Denn wirkte eine Kraft <hi rendition="#aq">l</hi> am Umfange des Rades <hi rendition="#aq">Q,</hi> ſo muͤßte ſie, um <hi rendition="#aq">L</hi> zu erhalten, zu <hi rendition="#aq">L</hi> ſelbſt im Verhaͤltniſſe der Halbmeſſer von <hi rendition="#aq">A</hi> und <hi rendition="#aq">Q,</hi> d. i. im Verhaͤltniſſe <hi rendition="#aq">a:q</hi> ſeyn, ſ. <hi rendition="#b">Rad an der Welle.</hi> Mit einer dieſem <hi rendition="#aq">l</hi> gleichen Gewalt wird alſo der Triebſtock von <hi rendition="#aq">B,</hi> der dem Zahne des Rades <hi rendition="#aq">Q</hi> im Wege ſteht, von <hi rendition="#aq">L</hi> gedruͤckt. Es iſt daher ſo viel, als waͤre <hi rendition="#aq">L</hi> gar nicht da, aber an <hi rendition="#aq">B</hi> wirkte die Laſt <hi rendition="#aq">l</hi> Soll nun dieſe durch eine Kraft <foreign xml:lang="grc">λ</foreign> am Umfange des Rades <hi rendition="#aq">R</hi> gerade erhalten werden, ſo muß wiederum <foreign xml:lang="grc">λ</foreign> zu <hi rendition="#aq">l</hi> im Verhaͤltniſſe der Halbmeſſer <hi rendition="#aq">b</hi> und <hi rendition="#aq">r</hi> ſeyn. Mit einer dieſem <foreign xml:lang="grc">λ</foreign> gleichen Gewalt druͤckt der Zahn des Rades <hi rendition="#aq">R</hi> gegen den ihn beruͤhrenden Triebſtock von <hi rendition="#aq">C;</hi> daher es ſo viel iſt, als waͤre auch <hi rendition="#aq">l</hi> gar nicht da, aber an <hi rendition="#aq">C</hi> wirkte die Laſt <foreign xml:lang="grc">λ</foreign>. Soll nun dieſe durch die Kraft <hi rendition="#aq">K</hi> am Umfange von <hi rendition="#aq">S</hi> erhalten werden, ſo<lb/></p> </div> </div> </div> </body> </text> </TEI> [629/0635]
zugleich die Welle des Rades R, welches mit ſeinen Zaͤhnen in das Getriebe C greift. Dieſes letzte Getriebe iſt die Welle des Rades S, an deſſen Umfange die Kraft K nach der Richtung der Tangente MK wirkt. Auf dieſe Art wirken K und L einander entgegen. Denn man darf nur mit aufmerkſamer Betrachtung der Figur unterſuchen, wie ſich die Raͤder und Getriebe drehen muͤſſen, wenn K weiter fortgeht, ſo wird man finden, daß dabey der Punkt der Welle A, an dem L haͤngt, aufwaͤrts gehen, und L erheben oder naͤher heranziehen muß.
Man ſieht auch, daß die Welle A und das Rad S keiner Zaͤhne beduͤrfen, daß ſogar das Rad S ganz wegbleiben und ſtatt deſſen nur ein Arm oder eine Kurbel CM da ſeyn kan, an der K ſenkrecht wirkt. Ich will die drey Raͤder durch die Buchſtaben Q, R, S, und ihre Halbmeſſer durch q, r, s; die drey Wellen durch A, B, C, und ihre Halbmeſſer durch a, b, c bezeichnen. Unter den Wellen ſind eigentlich nur B und C Getriebe oder mit Erhoͤhungen (Triebſtoͤcken) verſehen; ich verſtatte mir aber der Kuͤrze halber alle drey Getriebe zu nennen.
Die entgegengeſetzten Kraͤfte K und L werden im Gleichgewichte ſeyn, wenn ſich K zu L verhaͤlt, wie das Product aller Halbmeſſer der Getriebe, zu dem Producte aller Halbmeſſer der Raͤder. Denn wirkte eine Kraft l am Umfange des Rades Q, ſo muͤßte ſie, um L zu erhalten, zu L ſelbſt im Verhaͤltniſſe der Halbmeſſer von A und Q, d. i. im Verhaͤltniſſe a:q ſeyn, ſ. Rad an der Welle. Mit einer dieſem l gleichen Gewalt wird alſo der Triebſtock von B, der dem Zahne des Rades Q im Wege ſteht, von L gedruͤckt. Es iſt daher ſo viel, als waͤre L gar nicht da, aber an B wirkte die Laſt l Soll nun dieſe durch eine Kraft λ am Umfange des Rades R gerade erhalten werden, ſo muß wiederum λ zu l im Verhaͤltniſſe der Halbmeſſer b und r ſeyn. Mit einer dieſem λ gleichen Gewalt druͤckt der Zahn des Rades R gegen den ihn beruͤhrenden Triebſtock von C; daher es ſo viel iſt, als waͤre auch l gar nicht da, aber an C wirkte die Laſt λ. Soll nun dieſe durch die Kraft K am Umfange von S erhalten werden, ſo
Suche im WerkInformationen zum Werk
Download dieses Werks
XML (TEI P5) ·
HTML ·
Text Metadaten zum WerkTEI-Header · CMDI · Dublin Core Ansichten dieser Seite
Voyant Tools ?Language Resource Switchboard?FeedbackSie haben einen Fehler gefunden? Dann können Sie diesen über unsere Qualitätssicherungsplattform DTAQ melden. Kommentar zur DTA-AusgabeDieses Werk wurde im Rahmen des Moduls DTA-Erweiterungen (DTAE) digitalisiert. Weitere Informationen … Bibliothek des Max-Planck-Instituts für Wissenschaftsgeschichte : Bereitstellung der Texttranskription.
(2015-09-02T12:13:09Z)
Bitte beachten Sie, dass die aktuelle Transkription (und Textauszeichnung) mittlerweile nicht mehr dem Stand zum Zeitpunkt der Übernahme des Werkes in das DTA entsprechen muss.
Matthias Boenig: Bearbeitung der digitalen Edition.
(2015-09-02T12:13:09Z)
Weitere Informationen:Bogensignaturen: keine Angabe; Druckfehler: keine Angabe; fremdsprachliches Material: keine Angabe; Geminations-/Abkürzungsstriche: keine Angabe; Hervorhebungen (Antiqua, Sperrschrift, Kursive etc.): keine Angabe; i/j in Fraktur: wie Vorlage; I/J in Fraktur: wie Vorlage; Kolumnentitel: keine Angabe; Kustoden: keine Angabe; langes s (ſ): wie Vorlage; Normalisierungen: keine Angabe; rundes r (ꝛ): keine Angabe; Seitenumbrüche markiert: ja; Silbentrennung: aufgelöst; u/v bzw. U/V: wie Vorlage; Vokale mit übergest. e: wie Vorlage; Vollständigkeit: keine Angabe; Zeichensetzung: keine Angabe; Zeilenumbrüche markiert: nein;
|
Insbesondere im Hinblick auf die §§ 86a StGB und 130 StGB wird festgestellt, dass die auf diesen Seiten abgebildeten Inhalte weder in irgendeiner Form propagandistischen Zwecken dienen, oder Werbung für verbotene Organisationen oder Vereinigungen darstellen, oder nationalsozialistische Verbrechen leugnen oder verharmlosen, noch zum Zwecke der Herabwürdigung der Menschenwürde gezeigt werden. Die auf diesen Seiten abgebildeten Inhalte (in Wort und Bild) dienen im Sinne des § 86 StGB Abs. 3 ausschließlich historischen, sozial- oder kulturwissenschaftlichen Forschungszwecken. Ihre Veröffentlichung erfolgt in der Absicht, Wissen zur Anregung der intellektuellen Selbstständigkeit und Verantwortungsbereitschaft des Staatsbürgers zu vermitteln und damit der Förderung seiner Mündigkeit zu dienen.
2007–2024 Deutsches Textarchiv, Berlin-Brandenburgische Akademie der Wissenschaften.
Kontakt: redaktion(at)deutschestextarchiv.de. |