Klein, Felix: Über Riemann's Theorie der Algebraischen Functionen und ihrer Integrale. Leipzig, 1882.(Borchardt's Journal Bd. 87) und Hettner (Göttinger Nachrichten, 1880, p. 386). Auf anschauungsmässigem Wege kann man sich die Richtigkeit der Behauptung folgendermassen verständlich machen. Sollte es unendlich viele eindeutige Transformationen der Gleichung in sich geben, so müsste es möglich sein, die zugehörige Riemann'sche Fläche derart continuirlich über sich hin zu verschieben, dass jede kleinste Figur mit sich selbst ähnlich bleibt. Die Curven, längs deren eine solche Verschiebung vor sich ginge, müssten die Fläche jedenfalls vollständig und zugleich einfach überdecken. Ein Kreuzungspunct dürfte in diesem Curvensysteme offenbar nicht vorhanden sein. Man müsste einen solchen Punct nämlich, damit keine Vieldeutigkeit der Transformation eintritt, als festbleibenden Punct betrachten und also die Geschwindigkeit der Verschiebung in ihm gleich Null setzen. Dann aber würde eine kleine Figur, welche bei der Verschiebung auf den Kreuzungspunct zu rückt, im Sinne der Bewegung nothwendig zusammengedrückt, senkrecht dazu auseinandergezogen werden; sie könnte also nicht mit sich selbst ähnlich bleiben, wie es doch durch den Begriff der conformen Abbildung verlangt wird. -- Andererseits müssen aber in jedem Curvensysteme, das eine Fläche vollständig und einfach überdeckt, nothwendig Kreuzungspuncte vorhanden sein. Diess ist derselbe Satz, den wir, in etwas weniger allgemeiner Form, in §. 11 aufgestellt haben. -- Die ganze Verschiebung der Fläche in sich ist also unmöglich, was zu beweisen war. Nach diesen Sätzen ist für , gleich 1 für , und gleich Null für alle grösseren p. Die Zahl der Moduln ist also für gleich Null, für gleich Eins, für grössere p gleich . Es wird gut sein, noch folgende Bemerkungen hinzuzufügen. Um den Punct eines Raumes von Dimensionen zu bestimmen, wird man im Allgemeinen mit Grössen nicht ausreichen: man wird mehr Grössen benöthigen, zwischen denen dann algebraische (oder auch transcendente) Relationen bestehen. Ausserdem mag es aber auch sein, dass man zweckmässigerweise Bestimmungsstücke einführt, von denen jedesmal verschiedene Serien denselben Punct der Mannigfaltigkeit bezeichnen. Welche Verhältnisse bei den Moduln, die bei existiren müssen, in dieser Hinsicht vorliegen, ist nur (Borchardt's Journal Bd. 87) und Hettner (Göttinger Nachrichten, 1880, p. 386). Auf anschauungsmässigem Wege kann man sich die Richtigkeit der Behauptung folgendermassen verständlich machen. Sollte es unendlich viele eindeutige Transformationen der Gleichung in sich geben, so müsste es möglich sein, die zugehörige Riemann'sche Fläche derart continuirlich über sich hin zu verschieben, dass jede kleinste Figur mit sich selbst ähnlich bleibt. Die Curven, längs deren eine solche Verschiebung vor sich ginge, müssten die Fläche jedenfalls vollständig und zugleich einfach überdecken. Ein Kreuzungspunct dürfte in diesem Curvensysteme offenbar nicht vorhanden sein. Man müsste einen solchen Punct nämlich, damit keine Vieldeutigkeit der Transformation eintritt, als festbleibenden Punct betrachten und also die Geschwindigkeit der Verschiebung in ihm gleich Null setzen. Dann aber würde eine kleine Figur, welche bei der Verschiebung auf den Kreuzungspunct zu rückt, im Sinne der Bewegung nothwendig zusammengedrückt, senkrecht dazu auseinandergezogen werden; sie könnte also nicht mit sich selbst ähnlich bleiben, wie es doch durch den Begriff der conformen Abbildung verlangt wird. — Andererseits müssen aber in jedem Curvensysteme, das eine Fläche vollständig und einfach überdeckt, nothwendig Kreuzungspuncte vorhanden sein. Diess ist derselbe Satz, den wir, in etwas weniger allgemeiner Form, in §. 11 aufgestellt haben. — Die ganze Verschiebung der Fläche in sich ist also unmöglich, was zu beweisen war. Nach diesen Sätzen ist für , gleich 1 für , und gleich Null für alle grösseren p. Die Zahl der Moduln ist also für gleich Null, für gleich Eins, für grössere p gleich . Es wird gut sein, noch folgende Bemerkungen hinzuzufügen. Um den Punct eines Raumes von Dimensionen zu bestimmen, wird man im Allgemeinen mit Grössen nicht ausreichen: man wird mehr Grössen benöthigen, zwischen denen dann algebraische (oder auch transcendente) Relationen bestehen. Ausserdem mag es aber auch sein, dass man zweckmässigerweise Bestimmungsstücke einführt, von denen jedesmal verschiedene Serien denselben Punct der Mannigfaltigkeit bezeichnen. Welche Verhältnisse bei den Moduln, die bei existiren müssen, in dieser Hinsicht vorliegen, ist nur <TEI> <text> <body> <div n="1"> <div n="2"> <p><pb facs="#f0076" n="68"/> (Borchardt's Journal Bd. 87) und <hi rendition="#g">Hettner</hi> (Göttinger Nachrichten, 1880, p. 386). Auf anschauungsmässigem Wege kann man sich die Richtigkeit der Behauptung folgendermassen verständlich machen. Sollte es unendlich viele eindeutige Transformationen der Gleichung in sich geben, so müsste es möglich sein, die zugehörige Riemann'sche Fläche derart continuirlich über sich hin zu <hi rendition="#i">verschieben</hi>, dass jede kleinste Figur mit sich selbst ähnlich bleibt. Die Curven, längs deren eine solche Verschiebung vor sich ginge, müssten die Fläche jedenfalls vollständig und zugleich einfach überdecken. Ein <hi rendition="#i">Kreuzungspunct</hi> dürfte in diesem Curvensysteme offenbar nicht vorhanden sein. Man müsste einen solchen Punct nämlich, damit keine Vieldeutigkeit der Transformation eintritt, als festbleibenden Punct betrachten und also die Geschwindigkeit der Verschiebung in ihm gleich Null setzen. Dann aber würde eine kleine Figur, welche bei der Verschiebung auf den Kreuzungspunct zu rückt, im Sinne der Bewegung nothwendig zusammengedrückt, senkrecht dazu auseinandergezogen werden; sie könnte also nicht mit sich selbst ähnlich bleiben, wie es doch durch den Begriff der conformen Abbildung verlangt wird. — Andererseits müssen aber in jedem Curvensysteme, das eine Fläche <formula notation="TeX">p > 1</formula> vollständig und einfach überdeckt, nothwendig Kreuzungspuncte vorhanden sein. Diess ist derselbe Satz, den wir, in etwas weniger allgemeiner Form, in §. 11 aufgestellt haben. — Die ganze Verschiebung der Fläche in sich ist also unmöglich, was zu beweisen war.</p> <p>Nach diesen Sätzen ist <formula notation="TeX">\varrho = 3</formula> für <formula notation="TeX">p = o</formula>, gleich 1 für <formula notation="TeX">p = 1</formula>, und gleich Null für alle grösseren <hi rendition="#i">p</hi>. <hi rendition="#i">Die Zahl der Moduln ist also für <formula notation="TeX">p = 0</formula> gleich Null, für <formula notation="TeX">p = 1</formula> gleich Eins, für grössere <hi rendition="#i">p</hi> gleich <formula notation="TeX">3p-3</formula></hi>.</p> <p>Es wird gut sein, noch folgende Bemerkungen hinzuzufügen. Um den Punct eines Raumes von <formula notation="TeX">(3p-3)</formula> Dimensionen zu bestimmen, wird man im Allgemeinen mit <formula notation="TeX">(3p-3)</formula> Grössen nicht ausreichen: man wird mehr Grössen benöthigen, zwischen denen dann algebraische (oder auch transcendente) Relationen bestehen. Ausserdem mag es aber auch sein, dass man zweckmässigerweise Bestimmungsstücke einführt, von denen jedesmal verschiedene Serien denselben Punct der Mannigfaltigkeit bezeichnen. Welche Verhältnisse bei den <formula notation="TeX">(3p-3)</formula> Moduln, die bei <formula notation="TeX">p > 1</formula> existiren müssen, in dieser Hinsicht vorliegen, ist nur </p> </div> </div> </body> </text> </TEI> [68/0076]
(Borchardt's Journal Bd. 87) und Hettner (Göttinger Nachrichten, 1880, p. 386). Auf anschauungsmässigem Wege kann man sich die Richtigkeit der Behauptung folgendermassen verständlich machen. Sollte es unendlich viele eindeutige Transformationen der Gleichung in sich geben, so müsste es möglich sein, die zugehörige Riemann'sche Fläche derart continuirlich über sich hin zu verschieben, dass jede kleinste Figur mit sich selbst ähnlich bleibt. Die Curven, längs deren eine solche Verschiebung vor sich ginge, müssten die Fläche jedenfalls vollständig und zugleich einfach überdecken. Ein Kreuzungspunct dürfte in diesem Curvensysteme offenbar nicht vorhanden sein. Man müsste einen solchen Punct nämlich, damit keine Vieldeutigkeit der Transformation eintritt, als festbleibenden Punct betrachten und also die Geschwindigkeit der Verschiebung in ihm gleich Null setzen. Dann aber würde eine kleine Figur, welche bei der Verschiebung auf den Kreuzungspunct zu rückt, im Sinne der Bewegung nothwendig zusammengedrückt, senkrecht dazu auseinandergezogen werden; sie könnte also nicht mit sich selbst ähnlich bleiben, wie es doch durch den Begriff der conformen Abbildung verlangt wird. — Andererseits müssen aber in jedem Curvensysteme, das eine Fläche [FORMEL] vollständig und einfach überdeckt, nothwendig Kreuzungspuncte vorhanden sein. Diess ist derselbe Satz, den wir, in etwas weniger allgemeiner Form, in §. 11 aufgestellt haben. — Die ganze Verschiebung der Fläche in sich ist also unmöglich, was zu beweisen war.
Nach diesen Sätzen ist [FORMEL] für [FORMEL], gleich 1 für [FORMEL], und gleich Null für alle grösseren p. Die Zahl der Moduln ist also für [FORMEL] gleich Null, für [FORMEL] gleich Eins, für grössere p gleich [FORMEL].
Es wird gut sein, noch folgende Bemerkungen hinzuzufügen. Um den Punct eines Raumes von [FORMEL] Dimensionen zu bestimmen, wird man im Allgemeinen mit [FORMEL] Grössen nicht ausreichen: man wird mehr Grössen benöthigen, zwischen denen dann algebraische (oder auch transcendente) Relationen bestehen. Ausserdem mag es aber auch sein, dass man zweckmässigerweise Bestimmungsstücke einführt, von denen jedesmal verschiedene Serien denselben Punct der Mannigfaltigkeit bezeichnen. Welche Verhältnisse bei den [FORMEL] Moduln, die bei [FORMEL] existiren müssen, in dieser Hinsicht vorliegen, ist nur
Suche im WerkInformationen zum Werk
Download dieses Werks
XML (TEI P5) ·
HTML ·
Text Metadaten zum WerkTEI-Header · CMDI · Dublin Core Ansichten dieser Seite
Voyant Tools ?Language Resource Switchboard?FeedbackSie haben einen Fehler gefunden? Dann können Sie diesen über unsere Qualitätssicherungsplattform DTAQ melden. Kommentar zur DTA-AusgabeDieses Werk wurde im Rahmen des Moduls DTA-Erweiterungen (DTAE) digitalisiert. Weitere Informationen … gutenberg.org: Bereitstellung der Texttranskription und Auszeichnung in HTML.
(2012-11-06T13:54:31Z)
Bitte beachten Sie, dass die aktuelle Transkription (und Textauszeichnung) mittlerweile nicht mehr dem Stand zum Zeitpunkt der Übernahme aus gutenberg.org entsprechen muss.
gutenberg.org: Bereitstellung der Bilddigitalisate
(2012-11-06T13:54:31Z)
Frank Wiegand: Konvertierung von HTML nach XML/TEI gemäß DTA-Basisformat.
(2012-11-06T13:54:31Z)
Weitere Informationen:Anmerkungen zur Transkription:
|
Insbesondere im Hinblick auf die §§ 86a StGB und 130 StGB wird festgestellt, dass die auf diesen Seiten abgebildeten Inhalte weder in irgendeiner Form propagandistischen Zwecken dienen, oder Werbung für verbotene Organisationen oder Vereinigungen darstellen, oder nationalsozialistische Verbrechen leugnen oder verharmlosen, noch zum Zwecke der Herabwürdigung der Menschenwürde gezeigt werden. Die auf diesen Seiten abgebildeten Inhalte (in Wort und Bild) dienen im Sinne des § 86 StGB Abs. 3 ausschließlich historischen, sozial- oder kulturwissenschaftlichen Forschungszwecken. Ihre Veröffentlichung erfolgt in der Absicht, Wissen zur Anregung der intellektuellen Selbstständigkeit und Verantwortungsbereitschaft des Staatsbürgers zu vermitteln und damit der Förderung seiner Mündigkeit zu dienen.
2007–2024 Deutsches Textarchiv, Berlin-Brandenburgische Akademie der Wissenschaften.
Kontakt: redaktion(at)deutschestextarchiv.de. |