macht x = a, so kömmt die Geschwindigkeit heraus, mit welcher die Flamme bey der Mündung BB heraus fährt,
[Formel 1]
für welche AEquation man, ohne merklich zu fehlen, diese nehmen kann:
[Formel 2]
Wenn wir nun für die Buchstaben a, b, m, n, und h die oben angezeigten Werthe setzen, nehm- lich a = 2; b = 4, m = 400, n = 1000 und b = 29100 Rheinl. Schuhe; so kommt
[Formel 3]
Lasst uns nun hernach das oben angeführte Exempel berechnen, wo b = 2 5/8 Englische Zoll, und a = 45 -- . Dahero ist 2 a = 90 -- und = = 33, 8. folglich l = 1, 528917, welches aber noch mit dieser Zahl 2, 30258509 multipli- ciret werden muß. Es ist aber
l 1,
macht x = a, ſo koͤmmt die Geſchwindigkeit heraus, mit welcher die Flamme bey der Muͤndung BB heraus faͤhrt,
[Formel 1]
fuͤr welche Æquation man, ohne merklich zu fehlen, dieſe nehmen kann:
[Formel 2]
Wenn wir nun fuͤr die Buchſtaben α, β, m, n, und h die oben angezeigten Werthe ſetzen, nehm- lich α = 2; β = 4, m = 400, n = 1000 und b = 29100 Rheinl. Schuhe; ſo kommt
[Formel 3]
Laſſt uns nun hernach das oben angefuͤhrte Exempel berechnen, wo b = 2 ⅝ Engliſche Zoll, und a = 45 — . Dahero iſt 2 a = 90 — und = = 33, 8. folglich l = 1, 528917, welches aber noch mit dieſer Zahl 2, 30258509 multipli- ciret werden muß. Es iſt aber
l 1,
<TEI><text><body><divn="1"><divn="2"><divn="3"><p><pbfacs="#f0334"n="314"/>
macht <hirendition="#aq"><hirendition="#i">x</hi> = <hirendition="#i">a</hi></hi>, ſo koͤmmt die Geſchwindigkeit<lb/>
heraus, mit welcher die Flamme bey der<lb/>
Muͤndung <hirendition="#aq">BB</hi> heraus faͤhrt,<lb/><formula/> fuͤr welche <hirendition="#aq">Æquation</hi> man, ohne merklich zu<lb/>
fehlen, dieſe nehmen kann:<lb/><formula/> Wenn<lb/>
wir nun fuͤr die Buchſtaben α, β, <hirendition="#aq"><hirendition="#i">m, n,</hi></hi><lb/>
und <hirendition="#aq"><hirendition="#i">h</hi></hi> die oben angezeigten Werthe ſetzen, nehm-<lb/>
lich α = 2; β = 4, <hirendition="#aq"><hirendition="#i">m</hi> = 400, <hirendition="#i">n</hi></hi> = 1000<lb/>
und <hirendition="#aq"><hirendition="#i">b</hi></hi> = 29100 Rheinl. Schuhe; ſo kommt<lb/><formula/></p><p>Laſſt uns nun hernach das oben angefuͤhrte<lb/>
Exempel berechnen, wo <hirendition="#aq"><hirendition="#i">b</hi></hi> = 2 ⅝ Engliſche<lb/>
Zoll, und <hirendition="#aq"><hirendition="#i">a</hi></hi> = 45 —<formulanotation="TeX">\frac {21}{32}</formula>. Dahero iſt<lb/>
2 <hirendition="#aq"><hirendition="#i">a</hi></hi> = 90 —<formulanotation="TeX">\frac {21}{16}</formula> und <formulanotation="TeX">\frac {2 a}{b}</formula> = <formulanotation="TeX">\frac {1419}{42}</formula> = 33, 8.<lb/>
folglich <hirendition="#aq"><hirendition="#i">l</hi></hi><formulanotation="TeX">\frac {2 a}{b}</formula> = 1, 528917, welches aber<lb/>
noch mit dieſer Zahl 2, 30258509 <hirendition="#aq">multipli-<lb/>
ci</hi>ret werden muß. Es iſt aber<lb/><fwplace="bottom"type="catch"><hirendition="#aq"><hirendition="#i">l</hi></hi> 1,</fw><lb/></p></div></div></div></body></text></TEI>
[314/0334]
macht x = a, ſo koͤmmt die Geſchwindigkeit
heraus, mit welcher die Flamme bey der
Muͤndung BB heraus faͤhrt,
[FORMEL] fuͤr welche Æquation man, ohne merklich zu
fehlen, dieſe nehmen kann:
[FORMEL] Wenn
wir nun fuͤr die Buchſtaben α, β, m, n,
und h die oben angezeigten Werthe ſetzen, nehm-
lich α = 2; β = 4, m = 400, n = 1000
und b = 29100 Rheinl. Schuhe; ſo kommt
[FORMEL]
Laſſt uns nun hernach das oben angefuͤhrte
Exempel berechnen, wo b = 2 ⅝ Engliſche
Zoll, und a = 45 — [FORMEL]. Dahero iſt
2 a = 90 — [FORMEL] und [FORMEL] = [FORMEL] = 33, 8.
folglich l[FORMEL] = 1, 528917, welches aber
noch mit dieſer Zahl 2, 30258509 multipli-
ciret werden muß. Es iſt aber
l 1,
Informationen zur CAB-Ansicht
Diese Ansicht bietet Ihnen die Darstellung des Textes in normalisierter Orthographie.
Diese Textvariante wird vollautomatisch erstellt und kann aufgrund dessen auch Fehler enthalten.
Alle veränderten Wortformen sind grau hinterlegt. Als fremdsprachliches Material erkannte
Textteile sind ausgegraut dargestellt.
Robins, Benjamin: Neue Grundsätze der Artillerie. Übers. v. Leonhard Euler. Berlin, 1745, S. 314. In: Deutsches Textarchiv <https://www.deutschestextarchiv.de/robins_artillerie_1745/334>, abgerufen am 10.11.2024.
Alle Inhalte dieser Seite unterstehen, soweit nicht anders gekennzeichnet, einer
Creative-Commons-Lizenz.
Die Rechte an den angezeigten Bilddigitalisaten, soweit nicht anders gekennzeichnet, liegen bei den besitzenden Bibliotheken.
Weitere Informationen finden Sie in den DTA-Nutzungsbedingungen.
Insbesondere im Hinblick auf die §§ 86a StGB und 130 StGB wird festgestellt, dass die auf
diesen Seiten abgebildeten Inhalte weder in irgendeiner Form propagandistischen Zwecken
dienen, oder Werbung für verbotene Organisationen oder Vereinigungen darstellen, oder
nationalsozialistische Verbrechen leugnen oder verharmlosen, noch zum Zwecke der
Herabwürdigung der Menschenwürde gezeigt werden.
Die auf diesen Seiten abgebildeten Inhalte (in Wort und Bild) dienen im Sinne des
§ 86 StGB Abs. 3 ausschließlich historischen, sozial- oder kulturwissenschaftlichen
Forschungszwecken. Ihre Veröffentlichung erfolgt in der Absicht, Wissen zur Anregung
der intellektuellen Selbstständigkeit und Verantwortungsbereitschaft des Staatsbürgers zu
vermitteln und damit der Förderung seiner Mündigkeit zu dienen.
Zitierempfehlung: Deutsches Textarchiv. Grundlage für ein Referenzkorpus der neuhochdeutschen Sprache. Herausgegeben von der Berlin-Brandenburgischen Akademie der Wissenschaften, Berlin 2024. URL: https://www.deutschestextarchiv.de/.