Anmelden (DTAQ) DWDS     dlexDB     CLARIN-D

Röll, [Victor] von (Hrsg.): Enzyklopädie des Eisenbahnwesens. 2. Aufl. Bd. 4. Berlin, Wien, 1913.

Bild:
<< vorherige Seite

Zu den zusätzlichen Widerständen gehören:

a) der Widerstand in den Kurven (wk ),

b) der Widerstand in Steigungen oder Gefällen (ws ) und

c) der Widerstand infolge der Beschleunigung (wp ).

Die zugehörigen Zugkräfte sind:
zu a) Zk = G · wk
zu b) Zs = G Bullet (+/- s), wenn + s die Steigung in %0, - s das Gefälle in %0 bedeutet.
zu c) worin p die Beschleunigung in m/Sek.2 und a den Zuschlag für die rotierenden Massen bedeutet (a = 0·1 0·2).

Die Gesamtzugkraft beträgt: Z = Z1 + Zk + Zs + Zp in kg, am Umfang der Triebräder gemessen. Ist diese Zugkraft bei einer Geschwindigkeit von v Metern in der Sekunde zu leisten, so ergibt sich die Beanspruchung des Kraftwerks mit in Kilowatt, wenn et den Gesamtwirkungsgrad der Triebfahrzeuge und el den Wirkungsgrad der Stromleitungsanlage (vom Kraftwerk bis zu den Stromabnehmern) bezeichnet. Die erwähnten Wirkungsgrade bewegen sich, je nach dem System, der Belastung u. s. w. in weiten Grenzen (65-80%) und sind in jedem Falle besonders zu erheben, bzw. anzunehmen.

Der Arbeitsverbrauch beim Zurücklegen einer Strecke setzt sich zusammen aus: dem Verbrauch für die Überwindung der Widerstände und der Steigung während der ganzen Fahrtdauer, sowie aus der Beschleunigung während der Anfahrzeit und der sonstigen Beschleunigungsperioden.

Die Zugkräfte, die Geschwindigkeiten, somit auch die Leistungen und Arbeiten sind im allgemeinen stark veränderliche Größen. Sie lassen sich auf analytischem oder graphischem Wege bestimmen.

Um die erforderliche Höchstleistung für das Kraftwerk zu erhalten, werden die Einzelleistungen der zu bestimmten Zeiten gleichzeitig auf der Strecke befindlichen Züge (die Leistungen an den Stromabnehmern gemessen) rechnerisch oder graphisch addiert. Die größte Summe dieser Einzelleistungen wird sodann durch den Wirkungsgrad der Leitungsanlage el dividiert und ergibt die aufzuwendende Höchstleistung des Kraftwerkes.

Die Höchstleistung ist bei elektrisch betriebenen Vollbahnstrecken wesentlich höher als die aus dem Arbeitsverbrauch zu rechnende mittlere Tagesleistung. In normalen Fällen ist das Verhältnis dieser beiden Leistungen 5 : 1 bis 3 : 1, kann jedoch bei schwach oder sehr unregelmäßig befahrenen Strecken noch wesentlich größer werden.

Bei Bahnen mit sehr regelmäßigen Zugsintervallen und ungefähr gleich schweren Zugsgarnituren (wie bei Stadt- und Straßenbahnen) sinkt dieses Verhältnis bis auf 1·5 : 1 und 1·2 : 1.

Findet auf der Strecke Stromrückgewinnung (Rekuperation) statt (bei der Fahrt im Gefälle oder beim Abbremsen), so ist der Arbeitsverbrauch um die so zurückgewonnene Energie zu vermindern.

Die Stromrückgewinnung ist bisher hauptsächlich bei Bergbahnen zur Anwendung gekommen, wo die Gefällsarbeit die Reibungsarbeit stark übersteigt und die gleichmäßige Steigung einfache Verhältnisse schafft. Sie ist bei allen Stromsystemen, wenn auch in sehr verschiedener Weise möglich. Betriebsmäßig am leichtesten und vollkommen selbsttätig erfolgt die Energierückgewinnung bei den Drehstrombahnen unter Einhaltung, einer praktisch gleichbleibenden Geschwindigkeit. Ähnlich ist es bei den Gleichstrombahnen mit Nebenschlußmotoren, die jedoch nur selten beim Bahnbetrieb Verwendung finden. Der Betriebswert der Nutzbremsung wird verschieden beurteilt. Ihre Vorteile sind Ersparnis an Energie, bzw. Brennmaterialkosten in Wärmekraftwerken sowie Schonung der Radreifen. Ihre Nachteile hingegen sind Konzentrierung der Bremswirkung auf die Triebachsen, daher Gefahr beim Versagen der elektrischen Bremse, starke Erwärmungen der während des Bremsens stromerzeugenden Bahnmotoren, sowie insbesondere die Schwierigkeit der Verwendung der rückgewonnenen Energie beim Ausbleiben von gleichzeitig unter Antriebstrom fahrenden Zügen und endlich die Komplikation der Fahrzeug- und Kraftwerksanlagen. Bei geringen mittleren Steigungen hat die Energierückgewinnung für den praktischen Betrieb keine wesentliche Bedeutung, da hier der Gewinn nur wenige Prozente der Gesamtenergie beträgt.

Die Höchstleistung des Kraftwerkes ist jedoch unter allen Umständen, ohne Berücksichtigung allenfalls möglicher Energierückgewinnung, festzusetzen.

Anlage des Kraftwerkes.

Steht die Ortswahl des Kraftwerkes frei, so wird dieses möglichst in die Mitte des Hauptkonsumgebietes verlegt, wobei jedoch auf die Grunderwerbskosten, auf die Wasserverhältnisse zur Kesselspeisung und für den Betrieb von Kondensationsanlagen sowie auf die Transportverhältnisse für die Betriebsmaterialien (Kohle, Öl u. s. w.) Rücksicht zu nehmen ist. Ist das Kraftwerk an einen bestimmten Ort gebunden, wie bei Wasserkraftanlagen, so wird dieser Umstand ausschlaggebend für die Wahl der Stromart, der Spannung und der Stromleitungsanlage.

Zu den zusätzlichen Widerständen gehören:

a) der Widerstand in den Kurven (wk ),

b) der Widerstand in Steigungen oder Gefällen (ws ) und

c) der Widerstand infolge der Beschleunigung (wp ).

Die zugehörigen Zugkräfte sind:
zu a) Zk = G · wk
zu b) Zs = G ∙ (± s), wenn + s die Steigung in ‰,s das Gefälle in bedeutet.
zu c) worin p die Beschleunigung in m/Sek.2 und α den Zuschlag für die rotierenden Massen bedeutet (α = 0·1 ∾ 0·2).

Die Gesamtzugkraft beträgt: Z = Z1 + Zk + Zs + Zp in kg, am Umfang der Triebräder gemessen. Ist diese Zugkraft bei einer Geschwindigkeit von v Metern in der Sekunde zu leisten, so ergibt sich die Beanspruchung des Kraftwerks mit in Kilowatt, wenn ηt den Gesamtwirkungsgrad der Triebfahrzeuge und ηl den Wirkungsgrad der Stromleitungsanlage (vom Kraftwerk bis zu den Stromabnehmern) bezeichnet. Die erwähnten Wirkungsgrade bewegen sich, je nach dem System, der Belastung u. s. w. in weiten Grenzen (65–80%) und sind in jedem Falle besonders zu erheben, bzw. anzunehmen.

Der Arbeitsverbrauch beim Zurücklegen einer Strecke setzt sich zusammen aus: dem Verbrauch für die Überwindung der Widerstände und der Steigung während der ganzen Fahrtdauer, sowie aus der Beschleunigung während der Anfahrzeit und der sonstigen Beschleunigungsperioden.

Die Zugkräfte, die Geschwindigkeiten, somit auch die Leistungen und Arbeiten sind im allgemeinen stark veränderliche Größen. Sie lassen sich auf analytischem oder graphischem Wege bestimmen.

Um die erforderliche Höchstleistung für das Kraftwerk zu erhalten, werden die Einzelleistungen der zu bestimmten Zeiten gleichzeitig auf der Strecke befindlichen Züge (die Leistungen an den Stromabnehmern gemessen) rechnerisch oder graphisch addiert. Die größte Summe dieser Einzelleistungen wird sodann durch den Wirkungsgrad der Leitungsanlage ηl dividiert und ergibt die aufzuwendende Höchstleistung des Kraftwerkes.

Die Höchstleistung ist bei elektrisch betriebenen Vollbahnstrecken wesentlich höher als die aus dem Arbeitsverbrauch zu rechnende mittlere Tagesleistung. In normalen Fällen ist das Verhältnis dieser beiden Leistungen 5 : 1 bis 3 : 1, kann jedoch bei schwach oder sehr unregelmäßig befahrenen Strecken noch wesentlich größer werden.

Bei Bahnen mit sehr regelmäßigen Zugsintervallen und ungefähr gleich schweren Zugsgarnituren (wie bei Stadt- und Straßenbahnen) sinkt dieses Verhältnis bis auf 1·5 : 1 und 1·2 : 1.

Findet auf der Strecke Stromrückgewinnung (Rekuperation) statt (bei der Fahrt im Gefälle oder beim Abbremsen), so ist der Arbeitsverbrauch um die so zurückgewonnene Energie zu vermindern.

Die Stromrückgewinnung ist bisher hauptsächlich bei Bergbahnen zur Anwendung gekommen, wo die Gefällsarbeit die Reibungsarbeit stark übersteigt und die gleichmäßige Steigung einfache Verhältnisse schafft. Sie ist bei allen Stromsystemen, wenn auch in sehr verschiedener Weise möglich. Betriebsmäßig am leichtesten und vollkommen selbsttätig erfolgt die Energierückgewinnung bei den Drehstrombahnen unter Einhaltung, einer praktisch gleichbleibenden Geschwindigkeit. Ähnlich ist es bei den Gleichstrombahnen mit Nebenschlußmotoren, die jedoch nur selten beim Bahnbetrieb Verwendung finden. Der Betriebswert der Nutzbremsung wird verschieden beurteilt. Ihre Vorteile sind Ersparnis an Energie, bzw. Brennmaterialkosten in Wärmekraftwerken sowie Schonung der Radreifen. Ihre Nachteile hingegen sind Konzentrierung der Bremswirkung auf die Triebachsen, daher Gefahr beim Versagen der elektrischen Bremse, starke Erwärmungen der während des Bremsens stromerzeugenden Bahnmotoren, sowie insbesondere die Schwierigkeit der Verwendung der rückgewonnenen Energie beim Ausbleiben von gleichzeitig unter Antriebstrom fahrenden Zügen und endlich die Komplikation der Fahrzeug- und Kraftwerksanlagen. Bei geringen mittleren Steigungen hat die Energierückgewinnung für den praktischen Betrieb keine wesentliche Bedeutung, da hier der Gewinn nur wenige Prozente der Gesamtenergie beträgt.

Die Höchstleistung des Kraftwerkes ist jedoch unter allen Umständen, ohne Berücksichtigung allenfalls möglicher Energierückgewinnung, festzusetzen.

Anlage des Kraftwerkes.

Steht die Ortswahl des Kraftwerkes frei, so wird dieses möglichst in die Mitte des Hauptkonsumgebietes verlegt, wobei jedoch auf die Grunderwerbskosten, auf die Wasserverhältnisse zur Kesselspeisung und für den Betrieb von Kondensationsanlagen sowie auf die Transportverhältnisse für die Betriebsmaterialien (Kohle, Öl u. s. w.) Rücksicht zu nehmen ist. Ist das Kraftwerk an einen bestimmten Ort gebunden, wie bei Wasserkraftanlagen, so wird dieser Umstand ausschlaggebend für die Wahl der Stromart, der Spannung und der Stromleitungsanlage.

<TEI>
  <text>
    <body>
      <div n="1">
        <div type="lexiconEntry" n="2">
          <p>
            <pb facs="#f0226" n="217"/>
          </p><lb/>
          <p>Zu den zusätzlichen Widerständen gehören:</p><lb/>
          <p><hi rendition="#i">a)</hi> der Widerstand in den Kurven <hi rendition="#i">(w<hi rendition="#sub">k</hi> ),</hi></p><lb/>
          <p><hi rendition="#i">b)</hi> der Widerstand in Steigungen oder Gefällen <hi rendition="#i">(w<hi rendition="#sub">s</hi> )</hi> und</p><lb/>
          <p><hi rendition="#i">c)</hi> der Widerstand infolge der Beschleunigung <hi rendition="#i">(w<hi rendition="#sub">p</hi> ).</hi></p><lb/>
          <p>Die zugehörigen Zugkräfte sind:<lb/><hi rendition="#et">zu <hi rendition="#i">a</hi>) <hi rendition="#i">Z<hi rendition="#sub">k</hi></hi> = <hi rendition="#i">G</hi> · <hi rendition="#i">w<hi rendition="#sub">k</hi></hi><lb/>
zu <hi rendition="#i">b</hi>) <hi rendition="#i">Z<hi rendition="#sub">s</hi></hi> = <hi rendition="#i">G</hi> &#x2219;<hi rendition="#i">s</hi>), wenn + <hi rendition="#i">s</hi> die Steigung in <hi rendition="#i">&#x2030;,</hi> &#x2013; <hi rendition="#i">s</hi> das Gefälle in <hi rendition="#i">&#x2030;</hi> bedeutet.<lb/>
zu <hi rendition="#i">c</hi>) <formula facs="https://media.dwds.de/dta/images/roell_eisenbahnwesen04_1913/figures/roell_eisenbahnwesen04_1913_figure-0532.jpg"/> worin <hi rendition="#i">p</hi> die Beschleunigung in <hi rendition="#i">m</hi>/Sek.<hi rendition="#sup">2</hi> und &#x03B1; den Zuschlag für die rotierenden Massen bedeutet (&#x03B1; = 0·1 &#x223E; 0·2).</hi></p><lb/>
          <p>Die Gesamtzugkraft beträgt: <hi rendition="#i">Z</hi> = <hi rendition="#i">Z</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">Z<hi rendition="#sub">k</hi></hi> + <hi rendition="#i">Z<hi rendition="#sub">s</hi></hi> + Z<hi rendition="#i"><hi rendition="#sub">p</hi></hi> in <hi rendition="#i">kg,</hi> am Umfang der Triebräder gemessen. Ist diese Zugkraft bei einer Geschwindigkeit von <hi rendition="#i">v</hi> Metern in der Sekunde zu leisten, so ergibt sich die Beanspruchung des Kraftwerks mit <formula facs="https://media.dwds.de/dta/images/roell_eisenbahnwesen04_1913/figures/roell_eisenbahnwesen04_1913_figure-0160.jpg"/> in Kilowatt, wenn &#x03B7;<hi rendition="#i">t</hi> den Gesamtwirkungsgrad der Triebfahrzeuge und &#x03B7;<hi rendition="#i">l</hi> den Wirkungsgrad der Stromleitungsanlage (vom Kraftwerk bis zu den Stromabnehmern) bezeichnet. Die erwähnten Wirkungsgrade bewegen sich, je nach dem System, der Belastung u. s. w. in weiten Grenzen (65&#x2013;80<hi rendition="#i">%</hi>) und sind in jedem Falle besonders zu erheben, bzw. anzunehmen.</p><lb/>
          <p>Der <hi rendition="#g">Arbeitsverbrauch</hi> beim Zurücklegen einer Strecke setzt sich zusammen aus: dem Verbrauch für die Überwindung der Widerstände und der Steigung während der ganzen Fahrtdauer, sowie aus der Beschleunigung während der Anfahrzeit und der sonstigen Beschleunigungsperioden.</p><lb/>
          <p>Die Zugkräfte, die Geschwindigkeiten, somit auch die Leistungen und Arbeiten sind im allgemeinen stark veränderliche Größen. Sie lassen sich auf analytischem oder graphischem Wege bestimmen.</p><lb/>
          <p>Um die erforderliche <hi rendition="#g">Höchstleistung</hi> für das Kraftwerk zu erhalten, werden die Einzelleistungen der zu bestimmten Zeiten gleichzeitig auf der Strecke befindlichen Züge (die Leistungen an den Stromabnehmern gemessen) rechnerisch oder graphisch addiert. Die größte Summe dieser Einzelleistungen wird sodann durch den Wirkungsgrad der Leitungsanlage &#x03B7;<hi rendition="#i">l</hi> dividiert und ergibt die aufzuwendende Höchstleistung des Kraftwerkes.</p><lb/>
          <p>Die Höchstleistung ist bei elektrisch betriebenen Vollbahnstrecken wesentlich höher als die aus dem Arbeitsverbrauch zu rechnende mittlere Tagesleistung. In normalen Fällen ist das Verhältnis dieser beiden Leistungen 5 : 1 bis 3 : 1, kann jedoch bei schwach oder sehr unregelmäßig befahrenen Strecken noch wesentlich größer werden.</p><lb/>
          <p>Bei Bahnen mit sehr regelmäßigen Zugsintervallen und ungefähr gleich schweren Zugsgarnituren (wie bei Stadt- und Straßenbahnen) sinkt dieses Verhältnis bis auf 1·5 : 1 und 1·2 : 1.</p><lb/>
          <p>Findet auf der Strecke Stromrückgewinnung (Rekuperation) statt (bei der Fahrt im Gefälle oder beim Abbremsen), so ist der Arbeitsverbrauch um die so zurückgewonnene Energie zu vermindern.</p><lb/>
          <p>Die <hi rendition="#g">Stromrückgewinnung</hi> ist bisher hauptsächlich bei Bergbahnen zur Anwendung gekommen, wo die Gefällsarbeit die Reibungsarbeit stark übersteigt und die gleichmäßige Steigung einfache Verhältnisse schafft. Sie ist bei allen Stromsystemen, wenn auch in sehr verschiedener Weise möglich. Betriebsmäßig am leichtesten und vollkommen selbsttätig erfolgt die Energierückgewinnung bei den Drehstrombahnen unter Einhaltung, einer praktisch gleichbleibenden Geschwindigkeit. Ähnlich ist es bei den Gleichstrombahnen mit Nebenschlußmotoren, die jedoch nur selten beim Bahnbetrieb Verwendung finden. Der Betriebswert der Nutzbremsung wird verschieden beurteilt. Ihre Vorteile sind Ersparnis an Energie, bzw. Brennmaterialkosten in Wärmekraftwerken sowie Schonung der Radreifen. Ihre Nachteile hingegen sind Konzentrierung der Bremswirkung auf die Triebachsen, daher Gefahr beim Versagen der elektrischen Bremse, starke Erwärmungen der während des Bremsens stromerzeugenden Bahnmotoren, sowie insbesondere die Schwierigkeit der Verwendung der rückgewonnenen Energie beim Ausbleiben von gleichzeitig unter Antriebstrom fahrenden Zügen und endlich die Komplikation der Fahrzeug- und Kraftwerksanlagen. Bei geringen mittleren Steigungen hat die Energierückgewinnung für den praktischen Betrieb keine wesentliche Bedeutung, da hier der Gewinn nur wenige Prozente der Gesamtenergie beträgt.</p><lb/>
          <p>Die Höchstleistung des Kraftwerkes ist jedoch unter allen Umständen, ohne Berücksichtigung allenfalls möglicher Energierückgewinnung, festzusetzen.</p><lb/>
          <p rendition="#c"><hi rendition="#g">Anlage des Kraftwerkes</hi>.</p><lb/>
          <p>Steht die Ortswahl des Kraftwerkes frei, so wird dieses möglichst in die Mitte des Hauptkonsumgebietes verlegt, wobei jedoch auf die Grunderwerbskosten, auf die Wasserverhältnisse zur Kesselspeisung und für den Betrieb von Kondensationsanlagen sowie auf die Transportverhältnisse für die Betriebsmaterialien (Kohle, Öl u. s. w.) Rücksicht zu nehmen ist. Ist das Kraftwerk an einen bestimmten Ort gebunden, wie bei Wasserkraftanlagen, so wird dieser Umstand ausschlaggebend für die Wahl der Stromart, der Spannung und der Stromleitungsanlage.
</p>
        </div>
      </div>
    </body>
  </text>
</TEI>
[217/0226] Zu den zusätzlichen Widerständen gehören: a) der Widerstand in den Kurven (wk ), b) der Widerstand in Steigungen oder Gefällen (ws ) und c) der Widerstand infolge der Beschleunigung (wp ). Die zugehörigen Zugkräfte sind: zu a) Zk = G · wk zu b) Zs = G ∙ (± s), wenn + s die Steigung in ‰, – s das Gefälle in ‰ bedeutet. zu c) [FORMEL] worin p die Beschleunigung in m/Sek.2 und α den Zuschlag für die rotierenden Massen bedeutet (α = 0·1 ∾ 0·2). Die Gesamtzugkraft beträgt: Z = Z1 + Zk + Zs + Zp in kg, am Umfang der Triebräder gemessen. Ist diese Zugkraft bei einer Geschwindigkeit von v Metern in der Sekunde zu leisten, so ergibt sich die Beanspruchung des Kraftwerks mit [FORMEL] in Kilowatt, wenn ηt den Gesamtwirkungsgrad der Triebfahrzeuge und ηl den Wirkungsgrad der Stromleitungsanlage (vom Kraftwerk bis zu den Stromabnehmern) bezeichnet. Die erwähnten Wirkungsgrade bewegen sich, je nach dem System, der Belastung u. s. w. in weiten Grenzen (65–80%) und sind in jedem Falle besonders zu erheben, bzw. anzunehmen. Der Arbeitsverbrauch beim Zurücklegen einer Strecke setzt sich zusammen aus: dem Verbrauch für die Überwindung der Widerstände und der Steigung während der ganzen Fahrtdauer, sowie aus der Beschleunigung während der Anfahrzeit und der sonstigen Beschleunigungsperioden. Die Zugkräfte, die Geschwindigkeiten, somit auch die Leistungen und Arbeiten sind im allgemeinen stark veränderliche Größen. Sie lassen sich auf analytischem oder graphischem Wege bestimmen. Um die erforderliche Höchstleistung für das Kraftwerk zu erhalten, werden die Einzelleistungen der zu bestimmten Zeiten gleichzeitig auf der Strecke befindlichen Züge (die Leistungen an den Stromabnehmern gemessen) rechnerisch oder graphisch addiert. Die größte Summe dieser Einzelleistungen wird sodann durch den Wirkungsgrad der Leitungsanlage ηl dividiert und ergibt die aufzuwendende Höchstleistung des Kraftwerkes. Die Höchstleistung ist bei elektrisch betriebenen Vollbahnstrecken wesentlich höher als die aus dem Arbeitsverbrauch zu rechnende mittlere Tagesleistung. In normalen Fällen ist das Verhältnis dieser beiden Leistungen 5 : 1 bis 3 : 1, kann jedoch bei schwach oder sehr unregelmäßig befahrenen Strecken noch wesentlich größer werden. Bei Bahnen mit sehr regelmäßigen Zugsintervallen und ungefähr gleich schweren Zugsgarnituren (wie bei Stadt- und Straßenbahnen) sinkt dieses Verhältnis bis auf 1·5 : 1 und 1·2 : 1. Findet auf der Strecke Stromrückgewinnung (Rekuperation) statt (bei der Fahrt im Gefälle oder beim Abbremsen), so ist der Arbeitsverbrauch um die so zurückgewonnene Energie zu vermindern. Die Stromrückgewinnung ist bisher hauptsächlich bei Bergbahnen zur Anwendung gekommen, wo die Gefällsarbeit die Reibungsarbeit stark übersteigt und die gleichmäßige Steigung einfache Verhältnisse schafft. Sie ist bei allen Stromsystemen, wenn auch in sehr verschiedener Weise möglich. Betriebsmäßig am leichtesten und vollkommen selbsttätig erfolgt die Energierückgewinnung bei den Drehstrombahnen unter Einhaltung, einer praktisch gleichbleibenden Geschwindigkeit. Ähnlich ist es bei den Gleichstrombahnen mit Nebenschlußmotoren, die jedoch nur selten beim Bahnbetrieb Verwendung finden. Der Betriebswert der Nutzbremsung wird verschieden beurteilt. Ihre Vorteile sind Ersparnis an Energie, bzw. Brennmaterialkosten in Wärmekraftwerken sowie Schonung der Radreifen. Ihre Nachteile hingegen sind Konzentrierung der Bremswirkung auf die Triebachsen, daher Gefahr beim Versagen der elektrischen Bremse, starke Erwärmungen der während des Bremsens stromerzeugenden Bahnmotoren, sowie insbesondere die Schwierigkeit der Verwendung der rückgewonnenen Energie beim Ausbleiben von gleichzeitig unter Antriebstrom fahrenden Zügen und endlich die Komplikation der Fahrzeug- und Kraftwerksanlagen. Bei geringen mittleren Steigungen hat die Energierückgewinnung für den praktischen Betrieb keine wesentliche Bedeutung, da hier der Gewinn nur wenige Prozente der Gesamtenergie beträgt. Die Höchstleistung des Kraftwerkes ist jedoch unter allen Umständen, ohne Berücksichtigung allenfalls möglicher Energierückgewinnung, festzusetzen. Anlage des Kraftwerkes. Steht die Ortswahl des Kraftwerkes frei, so wird dieses möglichst in die Mitte des Hauptkonsumgebietes verlegt, wobei jedoch auf die Grunderwerbskosten, auf die Wasserverhältnisse zur Kesselspeisung und für den Betrieb von Kondensationsanlagen sowie auf die Transportverhältnisse für die Betriebsmaterialien (Kohle, Öl u. s. w.) Rücksicht zu nehmen ist. Ist das Kraftwerk an einen bestimmten Ort gebunden, wie bei Wasserkraftanlagen, so wird dieser Umstand ausschlaggebend für die Wahl der Stromart, der Spannung und der Stromleitungsanlage.

Suche im Werk

Hilfe

Informationen zum Werk

Download dieses Werks

XML (TEI P5) · HTML · Text
TCF (text annotation layer)
XML (TEI P5 inkl. att.linguistic)

Metadaten zum Werk

TEI-Header · CMDI · Dublin Core

Ansichten dieser Seite

Voyant Tools ?

Language Resource Switchboard?

Feedback

Sie haben einen Fehler gefunden? Dann können Sie diesen über unsere Qualitätssicherungsplattform DTAQ melden.

Kommentar zur DTA-Ausgabe

Dieses Werk wurde im Rahmen des Moduls DTA-Erweiterungen (DTAE) digitalisiert. Weitere Informationen …

zeno.org – Contumax GmbH & Co. KG: Bereitstellung der Texttranskription. (2020-06-17T17:32:48Z) Bitte beachten Sie, dass die aktuelle Transkription (und Textauszeichnung) mittlerweile nicht mehr dem Stand zum Zeitpunkt der Übernahme des Werkes in das DTA entsprechen muss.
Andreas Nolda: Bearbeitung der digitalen Edition. (2020-06-17T17:32:48Z)

Weitere Informationen:

Bogensignaturen: nicht übernommen; Druckfehler: keine Angabe; fremdsprachliches Material: keine Angabe; Geminations-/Abkürzungsstriche: keine Angabe; Hervorhebungen (Antiqua, Sperrschrift, Kursive etc.): gekennzeichnet; Hervorhebungen I/J in Fraktur: keine Angabe; i/j in Fraktur: keine Angabe; Kolumnentitel: nicht übernommen; Kustoden: keine Angabe; langes s (ſ): keine Angabe; Normalisierungen: keine Angabe; rundes r (ꝛ): keine Angabe; Seitenumbrüche markiert: ja; Silbentrennung: aufgelöst; u/v bzw. U/V: keine Angabe; Vokale mit übergest. e: keine Angabe; Vollständigkeit: keine Angabe; Zeichensetzung: keine Angabe; Zeilenumbrüche markiert: nein

Spaltenumbrüche sind nicht markiert. Wiederholungszeichen (") wurden aufgelöst. Komplexe Formeln und Tabellen sind als Grafiken wiedergegeben.

Die Abbildungen im Text stammen von zeno.org – Contumax GmbH & Co. KG.




Ansicht auf Standard zurückstellen

URL zu diesem Werk: https://www.deutschestextarchiv.de/roell_eisenbahnwesen04_1913
URL zu dieser Seite: https://www.deutschestextarchiv.de/roell_eisenbahnwesen04_1913/226
Zitationshilfe: Röll, [Victor] von (Hrsg.): Enzyklopädie des Eisenbahnwesens. 2. Aufl. Bd. 4. Berlin, Wien, 1913, S. 217. In: Deutsches Textarchiv <https://www.deutschestextarchiv.de/roell_eisenbahnwesen04_1913/226>, abgerufen am 01.11.2024.