Anmelden (DTAQ) DWDS     dlexDB     CLARIN-D

Röll, [Victor] von (Hrsg.): Enzyklopädie des Eisenbahnwesens. 2. Aufl. Bd. 4. Berlin, Wien, 1913.

Bild:
<< vorherige Seite

in Reihen zu schalten. Derselbe Schalter bedient gleichzeitig die sekundären Stromkreise der Motoren, u. zw. so, daß bei Einzelschaltung beide Motoren parallel auf den Anlaßwiderstand geschaltet sind, während bei Kaskadenschaltung der Läufer des einen Motors mit den unter sich parallel geschalteten Spulen des Ständers des anderen Motors verbunden wird.

Der Anlaßwiderstand besteht im wesentlichen aus zwei Gefässen: einem unteren Wasserbehälter und einem oberen Raum, in dem die Elektroden des Widerstandes isoliert eingebaut sind. Beim Anlassen wird die Flüssigkeit mittels Druckluft aus dem unteren Behälter in den Widerstandsraum gehoben. Die aufsteigende Flüssigkeit benetzt mehr und mehr die Oberfläche der Elektroden und verringert somit den elektrischen Widerstand zwischen ihnen. Sobald die Flüssigkeit den durch die Konstruktion erlaubten höchsten Spiegel erreicht hat, schließen die metallischen Kontakte die Klemmen untereinander kurz.

Die Motoren der Lokomotive werden durch die elektrisch betätigte Luftdrucksteuerung von Westinghouse angelassen und geregelt. Der Strom für die elektromagnetischen Auslöser wird einem kleinen Transformator, der gleichzeitig den Kompressor und das Kreiselgebläse speist, entnommen.

Die Stromkreise der elektromagnetischen Auslöser sind derart angeordnet, daß zwei oder drei Lokomotiven mittels Steckkuppelungen und eines 6adrigen Kabels verbunden und von irgendeiner der Lokomotiven bedient werden können.

Nicht nur das Einschalten der Druckluftschalter sondern auch das Regeln des Anlaßwiderstandes aller in solcher Vielgliedersteuerung verbundenen Lokomotiven geschieht vom Fahrschalter einer beliebigen der verbundenen Lokomotiven aus, indem ein im Fahrschalter eingebauter kleiner Stilwell-Spannungsregler die elektromotorische Kraft eines durch alle Lokomotiven gehenden Stromkreises der Auslöser betätigt, und nach Belieben zu regeln erlaubt.

In der Praxis kann es erwünscht sein, bei Benützung mehrerer Lokomotiven die eine mehr als die andere zu beanspruchen. Soll z. B. aus Sicherheitsrücksichten, um den Zughaken nicht zu sehr zu beanspruchen, die Schiebelokomotive stärker belastet werden, so muß diese relativ schneller zu fahren trachten. Ein solcher Fall ungleicher Fahrgeschwindigkeit tritt auch dann ein, wenn die verbundenen Lokomotiven ungleiche Raddurchmesser haben. Dann erreichen die Motoren der Lokomotiven mit den kleinsten Rädern ihren Synchronismus früher als die der anderen Lokomotiven, und der Anlasser dieser Lokomotiven wird infolgedessen zuerst kurz geschlossen. Die Motoren mit kurzgeschlossenen Sekundärspulen fungieren aber durch geeignete Anordnung als Regler der Anlasser der anderen Lokomotiven, erlauben das Kurzschließen ihrer Anlasser nicht, und regeln die von diesen aufgenommene Stromstärke auf gleiche Höhe oder im gewünschten Verhältnis zur eigenen Stromstärke. Ahnlich wird die Zugkraft der Lokomotiven in Vielgliedersteuerung bei Talfahrt mit Zurückgewinnung des Stromes geregelt, mit dem Unterschied, daß sich in diesem Falle der Anlasser der Lokomotive mit dem größten Raddurchmesser schließt und die Motoren dieser Lokomotive die Regler der anderen werden. Beim Übergang von Talfahrt auf Bergfahrt oder von Bergfahrt auf Talfahrt wird die Regelung selbsttätig ohne irgendwelche Mitwirkung des Führers übernommen.

Mit dieser Anordnung wird die bei Drehstrom scheinbar unmögliche willkürliche Verteilung der Zugkraft tatsächlich erzielt.

Die Einrichtung der Lokomotive wird durch zwei Kompressoren mit Motoren von je 6 PS., einem Kreiselgebläse mit einem Motor von 2 PS., zwei Transformatoren für 3000/100 Volt von je 6 Kilowatt, zwei Spannungsmessern, zwei Strommessern und einem unmittelbar anzeigenden Leistungsmesser vervollständigt.

Es sollen hier noch einige Betriebsergebnisse erwähnt werden, die auf der Giovi-Linie mit diesen Lokomotiven erzielt und vom italienischen Staatsbahningenieur Calzolari gelegentlich des internationalen elektrischen Kongresses in Turin (10.-17. September 1911) mitgeteilt wurden.

Es sei wiederholt, daß die elektrisierte Giovi-Linie einen außerordentlich regen Verkehr hat und eine Steigung von 36%0 aufweist.

Den bezeichneten Mitteilungen ist zu entnehmen, daß die Lokomotiven bei den Übernahmsproben den gestellten Forderungen nicht nur entsprachen, sondern diese übertroffen haben. Im regelmäßigen Betrieb haben sie sich vorzüglich bewährt; die Zugförderung mit zwei und mehreren Lokomotiven geht anstandslos vor sich, und die Rückgewinnung der elektrischen Energie auf den Gefällen wird seit 1. Mai 1911 im normalen Betriebe angewendet.

Der Energieverbrauch beträgt bei der Giovi-Linie f. d. Tonnenkilometer ohne Rekuperation 100 Wattstunden, in der Zentrale gemessen. Dieser außerordentlich hohe Wert erklärt sich aus der beträchtlichen Höhendifferenz von 300 m, die zwischen den beiden Endpunkten der elektrisierten Linie besteht. Berechnet man den Stromverbrauch f. d. virtuellen Tonnenkilometer, so ergibt sich ein Wert von 14·5 Wattstunden, in der Zentrale gemessen.

Weiters teilt diese Veröffentlichung in bezug auf die Ersparnisse an Brennmaterial, bei Anwendung der Rekuperation, folgendes mit.

In der ersten Betriebsperiode wurden die regelmäßigen Züge auf dem Gefälle mit der mechanischen Bremse abgebremst, und die Rekuperation bloß mit Versuchszügen angewendet, um das Personal eingehend zu schulen.

Nach der mit 1. Mai 1911 erfolgten Anwendung der Rekuperation bei allen fahrplanmäßigen Zügen, ergab sich ein Ersparnis von 18-20% an Brennmaterial in der Zentrale gegenüber dem Verbrauch ohne Rekuperation.

Auf Grund dieser günstigen Erfahrungen hat die italienische Staatsbahnverwaltung nunmehr beschlossen, den elektrischen Betrieb auf ihren Vollbahnstrecken weiter auszudehnen. Hierfür wurde zunächst die zweite Strecke der

in Reihen zu schalten. Derselbe Schalter bedient gleichzeitig die sekundären Stromkreise der Motoren, u. zw. so, daß bei Einzelschaltung beide Motoren parallel auf den Anlaßwiderstand geschaltet sind, während bei Kaskadenschaltung der Läufer des einen Motors mit den unter sich parallel geschalteten Spulen des Ständers des anderen Motors verbunden wird.

Der Anlaßwiderstand besteht im wesentlichen aus zwei Gefässen: einem unteren Wasserbehälter und einem oberen Raum, in dem die Elektroden des Widerstandes isoliert eingebaut sind. Beim Anlassen wird die Flüssigkeit mittels Druckluft aus dem unteren Behälter in den Widerstandsraum gehoben. Die aufsteigende Flüssigkeit benetzt mehr und mehr die Oberfläche der Elektroden und verringert somit den elektrischen Widerstand zwischen ihnen. Sobald die Flüssigkeit den durch die Konstruktion erlaubten höchsten Spiegel erreicht hat, schließen die metallischen Kontakte die Klemmen untereinander kurz.

Die Motoren der Lokomotive werden durch die elektrisch betätigte Luftdrucksteuerung von Westinghouse angelassen und geregelt. Der Strom für die elektromagnetischen Auslöser wird einem kleinen Transformator, der gleichzeitig den Kompressor und das Kreiselgebläse speist, entnommen.

Die Stromkreise der elektromagnetischen Auslöser sind derart angeordnet, daß zwei oder drei Lokomotiven mittels Steckkuppelungen und eines 6adrigen Kabels verbunden und von irgendeiner der Lokomotiven bedient werden können.

Nicht nur das Einschalten der Druckluftschalter sondern auch das Regeln des Anlaßwiderstandes aller in solcher Vielgliedersteuerung verbundenen Lokomotiven geschieht vom Fahrschalter einer beliebigen der verbundenen Lokomotiven aus, indem ein im Fahrschalter eingebauter kleiner Stilwell-Spannungsregler die elektromotorische Kraft eines durch alle Lokomotiven gehenden Stromkreises der Auslöser betätigt, und nach Belieben zu regeln erlaubt.

In der Praxis kann es erwünscht sein, bei Benützung mehrerer Lokomotiven die eine mehr als die andere zu beanspruchen. Soll z. B. aus Sicherheitsrücksichten, um den Zughaken nicht zu sehr zu beanspruchen, die Schiebelokomotive stärker belastet werden, so muß diese relativ schneller zu fahren trachten. Ein solcher Fall ungleicher Fahrgeschwindigkeit tritt auch dann ein, wenn die verbundenen Lokomotiven ungleiche Raddurchmesser haben. Dann erreichen die Motoren der Lokomotiven mit den kleinsten Rädern ihren Synchronismus früher als die der anderen Lokomotiven, und der Anlasser dieser Lokomotiven wird infolgedessen zuerst kurz geschlossen. Die Motoren mit kurzgeschlossenen Sekundärspulen fungieren aber durch geeignete Anordnung als Regler der Anlasser der anderen Lokomotiven, erlauben das Kurzschließen ihrer Anlasser nicht, und regeln die von diesen aufgenommene Stromstärke auf gleiche Höhe oder im gewünschten Verhältnis zur eigenen Stromstärke. Ahnlich wird die Zugkraft der Lokomotiven in Vielgliedersteuerung bei Talfahrt mit Zurückgewinnung des Stromes geregelt, mit dem Unterschied, daß sich in diesem Falle der Anlasser der Lokomotive mit dem größten Raddurchmesser schließt und die Motoren dieser Lokomotive die Regler der anderen werden. Beim Übergang von Talfahrt auf Bergfahrt oder von Bergfahrt auf Talfahrt wird die Regelung selbsttätig ohne irgendwelche Mitwirkung des Führers übernommen.

Mit dieser Anordnung wird die bei Drehstrom scheinbar unmögliche willkürliche Verteilung der Zugkraft tatsächlich erzielt.

Die Einrichtung der Lokomotive wird durch zwei Kompressoren mit Motoren von je 6 PS., einem Kreiselgebläse mit einem Motor von 2 PS., zwei Transformatoren für 3000/100 Volt von je 6 Kilowatt, zwei Spannungsmessern, zwei Strommessern und einem unmittelbar anzeigenden Leistungsmesser vervollständigt.

Es sollen hier noch einige Betriebsergebnisse erwähnt werden, die auf der Giovi-Linie mit diesen Lokomotiven erzielt und vom italienischen Staatsbahningenieur Calzolari gelegentlich des internationalen elektrischen Kongresses in Turin (10.–17. September 1911) mitgeteilt wurden.

Es sei wiederholt, daß die elektrisierte Giovi-Linie einen außerordentlich regen Verkehr hat und eine Steigung von 36 aufweist.

Den bezeichneten Mitteilungen ist zu entnehmen, daß die Lokomotiven bei den Übernahmsproben den gestellten Forderungen nicht nur entsprachen, sondern diese übertroffen haben. Im regelmäßigen Betrieb haben sie sich vorzüglich bewährt; die Zugförderung mit zwei und mehreren Lokomotiven geht anstandslos vor sich, und die Rückgewinnung der elektrischen Energie auf den Gefällen wird seit 1. Mai 1911 im normalen Betriebe angewendet.

Der Energieverbrauch beträgt bei der Giovi-Linie f. d. Tonnenkilometer ohne Rekuperation 100 Wattstunden, in der Zentrale gemessen. Dieser außerordentlich hohe Wert erklärt sich aus der beträchtlichen Höhendifferenz von 300 m, die zwischen den beiden Endpunkten der elektrisierten Linie besteht. Berechnet man den Stromverbrauch f. d. virtuellen Tonnenkilometer, so ergibt sich ein Wert von 14·5 Wattstunden, in der Zentrale gemessen.

Weiters teilt diese Veröffentlichung in bezug auf die Ersparnisse an Brennmaterial, bei Anwendung der Rekuperation, folgendes mit.

In der ersten Betriebsperiode wurden die regelmäßigen Züge auf dem Gefälle mit der mechanischen Bremse abgebremst, und die Rekuperation bloß mit Versuchszügen angewendet, um das Personal eingehend zu schulen.

Nach der mit 1. Mai 1911 erfolgten Anwendung der Rekuperation bei allen fahrplanmäßigen Zügen, ergab sich ein Ersparnis von 18–20% an Brennmaterial in der Zentrale gegenüber dem Verbrauch ohne Rekuperation.

Auf Grund dieser günstigen Erfahrungen hat die italienische Staatsbahnverwaltung nunmehr beschlossen, den elektrischen Betrieb auf ihren Vollbahnstrecken weiter auszudehnen. Hierfür wurde zunächst die zweite Strecke der

<TEI>
  <text>
    <body>
      <div n="1">
        <div type="lexiconEntry" n="2">
          <p><pb facs="#f0275" n="263"/>
in Reihen zu schalten. Derselbe Schalter bedient gleichzeitig die sekundären Stromkreise der Motoren, u. zw. so, daß bei Einzelschaltung beide Motoren parallel auf den Anlaßwiderstand geschaltet sind, während bei Kaskadenschaltung der Läufer des einen Motors mit den unter sich parallel geschalteten Spulen des Ständers des anderen Motors verbunden wird.</p><lb/>
          <p>Der Anlaßwiderstand besteht im wesentlichen aus zwei Gefässen: einem unteren Wasserbehälter und einem oberen Raum, in dem die Elektroden des Widerstandes isoliert eingebaut sind. Beim Anlassen wird die Flüssigkeit mittels Druckluft aus dem unteren Behälter in den Widerstandsraum gehoben. Die aufsteigende Flüssigkeit benetzt mehr und mehr die Oberfläche der Elektroden und verringert somit den elektrischen Widerstand zwischen ihnen. Sobald die Flüssigkeit den durch die Konstruktion erlaubten höchsten Spiegel erreicht hat, schließen die metallischen Kontakte die Klemmen untereinander kurz.</p><lb/>
          <p>Die Motoren der Lokomotive werden durch die elektrisch betätigte Luftdrucksteuerung von Westinghouse angelassen und geregelt. Der Strom für die elektromagnetischen Auslöser wird einem kleinen Transformator, der gleichzeitig den Kompressor und das Kreiselgebläse speist, entnommen.</p><lb/>
          <p>Die Stromkreise der elektromagnetischen Auslöser sind derart angeordnet, daß zwei oder drei Lokomotiven mittels Steckkuppelungen und eines 6adrigen Kabels verbunden und von irgendeiner der Lokomotiven bedient werden können.</p><lb/>
          <p>Nicht nur das Einschalten der Druckluftschalter sondern auch das Regeln des Anlaßwiderstandes aller in solcher Vielgliedersteuerung verbundenen Lokomotiven geschieht vom Fahrschalter einer beliebigen der verbundenen Lokomotiven aus, indem ein im Fahrschalter eingebauter kleiner Stilwell-Spannungsregler die elektromotorische Kraft eines durch alle Lokomotiven gehenden Stromkreises der Auslöser betätigt, und nach Belieben zu regeln erlaubt.</p><lb/>
          <p>In der Praxis kann es erwünscht sein, bei Benützung mehrerer Lokomotiven die eine mehr als die andere zu beanspruchen. Soll z. B. aus Sicherheitsrücksichten, um den Zughaken nicht zu sehr zu beanspruchen, die Schiebelokomotive stärker belastet werden, so muß diese relativ schneller zu fahren trachten. Ein solcher Fall ungleicher Fahrgeschwindigkeit tritt auch dann ein, wenn die verbundenen Lokomotiven ungleiche Raddurchmesser haben. Dann erreichen die Motoren der Lokomotiven mit den kleinsten Rädern ihren Synchronismus früher als die der anderen Lokomotiven, und der Anlasser dieser Lokomotiven wird infolgedessen zuerst kurz geschlossen. Die Motoren mit kurzgeschlossenen Sekundärspulen fungieren aber durch geeignete Anordnung als Regler der Anlasser der anderen Lokomotiven, erlauben das Kurzschließen ihrer Anlasser nicht, und regeln die von diesen aufgenommene Stromstärke auf gleiche Höhe oder im gewünschten Verhältnis zur eigenen Stromstärke. Ahnlich wird die Zugkraft der Lokomotiven in Vielgliedersteuerung bei Talfahrt mit Zurückgewinnung des Stromes geregelt, mit dem Unterschied, daß sich in diesem Falle der Anlasser der Lokomotive mit dem größten Raddurchmesser schließt und die Motoren dieser Lokomotive die Regler der anderen werden. Beim Übergang von Talfahrt auf Bergfahrt oder von Bergfahrt auf Talfahrt wird die Regelung selbsttätig ohne irgendwelche Mitwirkung des Führers übernommen.</p><lb/>
          <p>Mit dieser Anordnung wird die bei Drehstrom scheinbar unmögliche willkürliche Verteilung der Zugkraft tatsächlich erzielt.</p><lb/>
          <p>Die Einrichtung der Lokomotive wird durch zwei Kompressoren mit Motoren von je 6 PS., einem Kreiselgebläse mit einem Motor von 2 PS., zwei Transformatoren für 3000/100 Volt von je 6 Kilowatt, zwei Spannungsmessern, zwei Strommessern und einem unmittelbar anzeigenden Leistungsmesser vervollständigt.</p><lb/>
          <p>Es sollen hier noch einige Betriebsergebnisse erwähnt werden, die auf der Giovi-Linie mit diesen Lokomotiven erzielt und vom italienischen Staatsbahningenieur Calzolari gelegentlich des internationalen elektrischen Kongresses in Turin (10.&#x2013;17. September 1911) mitgeteilt wurden.</p><lb/>
          <p>Es sei wiederholt, daß die elektrisierte Giovi-Linie einen außerordentlich regen Verkehr hat und eine Steigung von 36<hi rendition="#i">&#x2030;</hi> aufweist.</p><lb/>
          <p>Den bezeichneten Mitteilungen ist zu entnehmen, daß die Lokomotiven bei den Übernahmsproben den gestellten Forderungen nicht nur entsprachen, sondern diese übertroffen haben. Im regelmäßigen Betrieb haben sie sich vorzüglich bewährt; die Zugförderung mit zwei und mehreren Lokomotiven geht anstandslos vor sich, und die Rückgewinnung der elektrischen Energie auf den Gefällen wird seit 1. Mai 1911 im normalen Betriebe angewendet.</p><lb/>
          <p>Der Energieverbrauch beträgt bei der Giovi-Linie f. d. Tonnenkilometer ohne Rekuperation 100 Wattstunden, in der Zentrale gemessen. Dieser außerordentlich hohe Wert erklärt sich aus der beträchtlichen Höhendifferenz von 300 <hi rendition="#i">m,</hi> die zwischen den beiden Endpunkten der elektrisierten Linie besteht. Berechnet man den Stromverbrauch f. d. virtuellen Tonnenkilometer, so ergibt sich ein Wert von 14·5 Wattstunden, in der Zentrale gemessen.</p><lb/>
          <p>Weiters teilt diese Veröffentlichung in bezug auf die Ersparnisse an Brennmaterial, bei Anwendung der Rekuperation, folgendes mit.</p><lb/>
          <p>In der ersten Betriebsperiode wurden die regelmäßigen Züge auf dem Gefälle mit der mechanischen Bremse abgebremst, und die Rekuperation bloß mit Versuchszügen angewendet, um das Personal eingehend zu schulen.</p><lb/>
          <p>Nach der mit 1. Mai 1911 erfolgten Anwendung der Rekuperation bei allen fahrplanmäßigen Zügen, ergab sich ein Ersparnis von 18&#x2013;20<hi rendition="#i">%</hi> an Brennmaterial in der Zentrale gegenüber dem Verbrauch ohne Rekuperation.</p><lb/>
          <p>Auf Grund dieser günstigen Erfahrungen hat die italienische Staatsbahnverwaltung nunmehr beschlossen, den elektrischen Betrieb auf ihren Vollbahnstrecken weiter auszudehnen. Hierfür wurde zunächst die zweite Strecke der
</p>
        </div>
      </div>
    </body>
  </text>
</TEI>
[263/0275] in Reihen zu schalten. Derselbe Schalter bedient gleichzeitig die sekundären Stromkreise der Motoren, u. zw. so, daß bei Einzelschaltung beide Motoren parallel auf den Anlaßwiderstand geschaltet sind, während bei Kaskadenschaltung der Läufer des einen Motors mit den unter sich parallel geschalteten Spulen des Ständers des anderen Motors verbunden wird. Der Anlaßwiderstand besteht im wesentlichen aus zwei Gefässen: einem unteren Wasserbehälter und einem oberen Raum, in dem die Elektroden des Widerstandes isoliert eingebaut sind. Beim Anlassen wird die Flüssigkeit mittels Druckluft aus dem unteren Behälter in den Widerstandsraum gehoben. Die aufsteigende Flüssigkeit benetzt mehr und mehr die Oberfläche der Elektroden und verringert somit den elektrischen Widerstand zwischen ihnen. Sobald die Flüssigkeit den durch die Konstruktion erlaubten höchsten Spiegel erreicht hat, schließen die metallischen Kontakte die Klemmen untereinander kurz. Die Motoren der Lokomotive werden durch die elektrisch betätigte Luftdrucksteuerung von Westinghouse angelassen und geregelt. Der Strom für die elektromagnetischen Auslöser wird einem kleinen Transformator, der gleichzeitig den Kompressor und das Kreiselgebläse speist, entnommen. Die Stromkreise der elektromagnetischen Auslöser sind derart angeordnet, daß zwei oder drei Lokomotiven mittels Steckkuppelungen und eines 6adrigen Kabels verbunden und von irgendeiner der Lokomotiven bedient werden können. Nicht nur das Einschalten der Druckluftschalter sondern auch das Regeln des Anlaßwiderstandes aller in solcher Vielgliedersteuerung verbundenen Lokomotiven geschieht vom Fahrschalter einer beliebigen der verbundenen Lokomotiven aus, indem ein im Fahrschalter eingebauter kleiner Stilwell-Spannungsregler die elektromotorische Kraft eines durch alle Lokomotiven gehenden Stromkreises der Auslöser betätigt, und nach Belieben zu regeln erlaubt. In der Praxis kann es erwünscht sein, bei Benützung mehrerer Lokomotiven die eine mehr als die andere zu beanspruchen. Soll z. B. aus Sicherheitsrücksichten, um den Zughaken nicht zu sehr zu beanspruchen, die Schiebelokomotive stärker belastet werden, so muß diese relativ schneller zu fahren trachten. Ein solcher Fall ungleicher Fahrgeschwindigkeit tritt auch dann ein, wenn die verbundenen Lokomotiven ungleiche Raddurchmesser haben. Dann erreichen die Motoren der Lokomotiven mit den kleinsten Rädern ihren Synchronismus früher als die der anderen Lokomotiven, und der Anlasser dieser Lokomotiven wird infolgedessen zuerst kurz geschlossen. Die Motoren mit kurzgeschlossenen Sekundärspulen fungieren aber durch geeignete Anordnung als Regler der Anlasser der anderen Lokomotiven, erlauben das Kurzschließen ihrer Anlasser nicht, und regeln die von diesen aufgenommene Stromstärke auf gleiche Höhe oder im gewünschten Verhältnis zur eigenen Stromstärke. Ahnlich wird die Zugkraft der Lokomotiven in Vielgliedersteuerung bei Talfahrt mit Zurückgewinnung des Stromes geregelt, mit dem Unterschied, daß sich in diesem Falle der Anlasser der Lokomotive mit dem größten Raddurchmesser schließt und die Motoren dieser Lokomotive die Regler der anderen werden. Beim Übergang von Talfahrt auf Bergfahrt oder von Bergfahrt auf Talfahrt wird die Regelung selbsttätig ohne irgendwelche Mitwirkung des Führers übernommen. Mit dieser Anordnung wird die bei Drehstrom scheinbar unmögliche willkürliche Verteilung der Zugkraft tatsächlich erzielt. Die Einrichtung der Lokomotive wird durch zwei Kompressoren mit Motoren von je 6 PS., einem Kreiselgebläse mit einem Motor von 2 PS., zwei Transformatoren für 3000/100 Volt von je 6 Kilowatt, zwei Spannungsmessern, zwei Strommessern und einem unmittelbar anzeigenden Leistungsmesser vervollständigt. Es sollen hier noch einige Betriebsergebnisse erwähnt werden, die auf der Giovi-Linie mit diesen Lokomotiven erzielt und vom italienischen Staatsbahningenieur Calzolari gelegentlich des internationalen elektrischen Kongresses in Turin (10.–17. September 1911) mitgeteilt wurden. Es sei wiederholt, daß die elektrisierte Giovi-Linie einen außerordentlich regen Verkehr hat und eine Steigung von 36‰ aufweist. Den bezeichneten Mitteilungen ist zu entnehmen, daß die Lokomotiven bei den Übernahmsproben den gestellten Forderungen nicht nur entsprachen, sondern diese übertroffen haben. Im regelmäßigen Betrieb haben sie sich vorzüglich bewährt; die Zugförderung mit zwei und mehreren Lokomotiven geht anstandslos vor sich, und die Rückgewinnung der elektrischen Energie auf den Gefällen wird seit 1. Mai 1911 im normalen Betriebe angewendet. Der Energieverbrauch beträgt bei der Giovi-Linie f. d. Tonnenkilometer ohne Rekuperation 100 Wattstunden, in der Zentrale gemessen. Dieser außerordentlich hohe Wert erklärt sich aus der beträchtlichen Höhendifferenz von 300 m, die zwischen den beiden Endpunkten der elektrisierten Linie besteht. Berechnet man den Stromverbrauch f. d. virtuellen Tonnenkilometer, so ergibt sich ein Wert von 14·5 Wattstunden, in der Zentrale gemessen. Weiters teilt diese Veröffentlichung in bezug auf die Ersparnisse an Brennmaterial, bei Anwendung der Rekuperation, folgendes mit. In der ersten Betriebsperiode wurden die regelmäßigen Züge auf dem Gefälle mit der mechanischen Bremse abgebremst, und die Rekuperation bloß mit Versuchszügen angewendet, um das Personal eingehend zu schulen. Nach der mit 1. Mai 1911 erfolgten Anwendung der Rekuperation bei allen fahrplanmäßigen Zügen, ergab sich ein Ersparnis von 18–20% an Brennmaterial in der Zentrale gegenüber dem Verbrauch ohne Rekuperation. Auf Grund dieser günstigen Erfahrungen hat die italienische Staatsbahnverwaltung nunmehr beschlossen, den elektrischen Betrieb auf ihren Vollbahnstrecken weiter auszudehnen. Hierfür wurde zunächst die zweite Strecke der

Suche im Werk

Hilfe

Informationen zum Werk

Download dieses Werks

XML (TEI P5) · HTML · Text
TCF (text annotation layer)
XML (TEI P5 inkl. att.linguistic)

Metadaten zum Werk

TEI-Header · CMDI · Dublin Core

Ansichten dieser Seite

Voyant Tools ?

Language Resource Switchboard?

Feedback

Sie haben einen Fehler gefunden? Dann können Sie diesen über unsere Qualitätssicherungsplattform DTAQ melden.

Kommentar zur DTA-Ausgabe

Dieses Werk wurde im Rahmen des Moduls DTA-Erweiterungen (DTAE) digitalisiert. Weitere Informationen …

zeno.org – Contumax GmbH & Co. KG: Bereitstellung der Texttranskription. (2020-06-17T17:32:48Z) Bitte beachten Sie, dass die aktuelle Transkription (und Textauszeichnung) mittlerweile nicht mehr dem Stand zum Zeitpunkt der Übernahme des Werkes in das DTA entsprechen muss.
Andreas Nolda: Bearbeitung der digitalen Edition. (2020-06-17T17:32:48Z)

Weitere Informationen:

Bogensignaturen: nicht übernommen; Druckfehler: keine Angabe; fremdsprachliches Material: keine Angabe; Geminations-/Abkürzungsstriche: keine Angabe; Hervorhebungen (Antiqua, Sperrschrift, Kursive etc.): gekennzeichnet; Hervorhebungen I/J in Fraktur: keine Angabe; i/j in Fraktur: keine Angabe; Kolumnentitel: nicht übernommen; Kustoden: keine Angabe; langes s (ſ): keine Angabe; Normalisierungen: keine Angabe; rundes r (ꝛ): keine Angabe; Seitenumbrüche markiert: ja; Silbentrennung: aufgelöst; u/v bzw. U/V: keine Angabe; Vokale mit übergest. e: keine Angabe; Vollständigkeit: keine Angabe; Zeichensetzung: keine Angabe; Zeilenumbrüche markiert: nein

Spaltenumbrüche sind nicht markiert. Wiederholungszeichen (") wurden aufgelöst. Komplexe Formeln und Tabellen sind als Grafiken wiedergegeben.

Die Abbildungen im Text stammen von zeno.org – Contumax GmbH & Co. KG.




Ansicht auf Standard zurückstellen

URL zu diesem Werk: https://www.deutschestextarchiv.de/roell_eisenbahnwesen04_1913
URL zu dieser Seite: https://www.deutschestextarchiv.de/roell_eisenbahnwesen04_1913/275
Zitationshilfe: Röll, [Victor] von (Hrsg.): Enzyklopädie des Eisenbahnwesens. 2. Aufl. Bd. 4. Berlin, Wien, 1913, S. 263. In: Deutsches Textarchiv <https://www.deutschestextarchiv.de/roell_eisenbahnwesen04_1913/275>, abgerufen am 26.11.2024.