Röll, [Victor] von (Hrsg.): Enzyklopädie des Eisenbahnwesens. 2. Aufl. Bd. 4. Berlin, Wien, 1913.einen Zeiger, der die Fahrgeschwindigkeiten auf einem Zifferblatt weist, ferner auf eine Registriervorrichtung, die das Geschwindigkeitsdiagramm auf einem Papierstreifen liefert (Glasers Annalen, 1879, Bd. V, S. 403). Der mit dem vorstehenden F. dem Grundgedanken nach übereinstimmende Petrische Kontrollapparat besitzt außer dem Zifferblatt für die Fahrgeschwindigkeiten ein zweites für die zurückgelegten Wege und ein drittes für die Zeit. Auf ähnlichen Grundgedanken sind aufgebaut die F. von Horn (Glasers Annalen 1884, S. 130); Jähns (Glasers Annalen 1884, S. 2); Ponget (Portefeuille economique des machines 1882, S. 145); Pohl, Brettmann u. s. w. c) Sonstige Vorrichtungen. Es sind hier noch verschiedenartige F. anzuführen, die ebenfalls nur an den Fahrzeugen angebracht werden, sich jedoch in keine der beiden vorstehenden Gruppen einreihen lassen. Der F. von Peyer, Favarger & Co. (Abb. 361) erhält seinen Antrieb vermittels der Welle a, die durch eine Fahrzeugachse in Umdrehung versetzt wird. Die Welle a treibt mittels zweier Stirnräder a1 und a2 die Schnecke b an. Die Schnecke greift in das Schneckenrad c ein, das mit einem Anker e fest verbunden ist. In das Ankerrad d greift ein schwingender Anker e ein, der mit dem Zeigerrahmen f verbunden ist. Der Zeigerrahmen f wird bei Drehung der Welle a, entgegengesetzt dem Sinne der Drehung des Uhrzeigers, mitgenommen. Eine Feder i sucht den Zeigerrahmen f stets im Sinne der Drehung des Uhrzeigers in seine Anfangsstellung zurückzudrehen. Mit dem Zeigerrahmen f ist der auf der Teilung spielende Zeiger fest verbunden. Wird das Fahrbetriebsmittel bewegt, so beginnt der Anker e eine pendelnde Bewegung und gestattet den Zähnen des Ankerrades d bis zu einem gewissen Grade zwischen seinen eigenen Zähnen hindurchzugehen, d. h. es wird bei jeder Geschwindigkeit ein Beharrungszustand in der Lage des Zeigerrahmens f bzw. des Zeigers eintreten und hiermit jederzeit die jeweilige Geschwindigkeit angezeigt werden. Die Bewegung (Schwingungszahl) des Ankers e wird durch ein sogenanntes Pendel m reguliert. Das Pendel (Schwinge) m ist kein freihängendes Pendel, sondern stellt eine um einen Drehpunkt q schwingende Masse dar. Der F. gibt die Geschwindigkeit am Zifferblatt jederzeit, am Streifen nach je 100 m zurückgelegten Weg an. Ferner markiert der Apparat die Zeit alle 1/2 (1) bzw. alle, 5 (10) Minuten und den Weg von 100 zu 100 m. Überdies besitzt der F. einen Schlagzeiger, der die erreichte größte Fahrgeschwindigkeit anzeigt. Der F. von Siemens und Halske beruht auf der Änderung der Feldstärke bei Bewegung des Rotors; mit dieser ändert sich auch die Spannung des erzeugten Wechselstromes. Die Bauart stellt sich als ein nach dem Induktortypus gebauter Wechselstromerzeuger in Verbindung mit einem aperiodischen Spannungmesser dar. Der Spannungsmesser ist ein Voltmeter nach Ferraris, dessen Skala empirisch in km/Std geeicht ist. (Dinglers Polytechnisches Journal 1903, Seite 491.) Der F. von Dettmar verwendet zur Bestimmung der Geschwindigkeit gleichfalls Elektrizität. Erregt man eine Wechselstrommaschine, so wird ihre Spannung abhängig von der Geschwindigkeit und somit ein Maß für die Geschwindigkeit geben. Man ist mithin in der Lage, an einem Voltmeter, das direkt in Kilometer für die Stunde geeicht ist, jederzeit die Geschwindigkeit abzulesen. Vervollkommt wurde der Apparat durch Verwendung von Drosselspulen, die durch einen vorhandenen Wechselstrom oder von pulsierendem Gleichstrom durchflössen werden, und andere Verbesserungen. (Glasers Annalen 1903, Bd. I, Seite 82.) F. und Radumdrehungszähler, die auf elektrischer Betätigung beruhen, wurden auch bei den Versuchsfahrten für elektrische Schnellbahnen auf der Strecke Marienfelde-Zossen verwendet. (Allgemeine Bauzeitung 1904, Seite 61.) Abb. 361. Fahrgeschwindigkeitsmesser. System Peyer, Farvarger & Co. Der F. von Frahm beruht auf der Anwendung der Resonanz, d. h. der Eigenschaft elastischer Körper, stark in Schwingung zu geraten, wenn sie von außen her rhytmische Anstöße empfangen, deren Schwingungszahl in der Zeiteinheit (Frequenz) mit der ihrer Eigenschwingung zusammenfällt. Das Element, auf dem sich der Frahmsche F. aufbaut, besteht aus einer Feder vom besten Uhrfederstahl oder einem anderen elastischen Stoff. Für gewöhnliche Verwendungszwecke ist eine solche Feder 0·25 mm dick, 3 mm breit und etwa 40 bis 55 mm lang. Nachdem verschiedene Geschwindigkeiten gemessen werden sollen, ist es nötig, eine entsprechende Anzahl von Federn, von denen einen Zeiger, der die Fahrgeschwindigkeiten auf einem Zifferblatt weist, ferner auf eine Registriervorrichtung, die das Geschwindigkeitsdiagramm auf einem Papierstreifen liefert (Glasers Annalen, 1879, Bd. V, S. 403). Der mit dem vorstehenden F. dem Grundgedanken nach übereinstimmende Petrische Kontrollapparat besitzt außer dem Zifferblatt für die Fahrgeschwindigkeiten ein zweites für die zurückgelegten Wege und ein drittes für die Zeit. Auf ähnlichen Grundgedanken sind aufgebaut die F. von Horn (Glasers Annalen 1884, S. 130); Jähns (Glasers Annalen 1884, S. 2); Ponget (Portefeuille économique des machines 1882, S. 145); Pohl, Brettmann u. s. w. c) Sonstige Vorrichtungen. Es sind hier noch verschiedenartige F. anzuführen, die ebenfalls nur an den Fahrzeugen angebracht werden, sich jedoch in keine der beiden vorstehenden Gruppen einreihen lassen. Der F. von Peyer, Favarger & Co. (Abb. 361) erhält seinen Antrieb vermittels der Welle a, die durch eine Fahrzeugachse in Umdrehung versetzt wird. Die Welle a treibt mittels zweier Stirnräder a1 und a2 die Schnecke b an. Die Schnecke greift in das Schneckenrad c ein, das mit einem Anker e fest verbunden ist. In das Ankerrad d greift ein schwingender Anker e ein, der mit dem Zeigerrahmen f verbunden ist. Der Zeigerrahmen f wird bei Drehung der Welle a, entgegengesetzt dem Sinne der Drehung des Uhrzeigers, mitgenommen. Eine Feder i sucht den Zeigerrahmen f stets im Sinne der Drehung des Uhrzeigers in seine Anfangsstellung zurückzudrehen. Mit dem Zeigerrahmen f ist der auf der Teilung spielende Zeiger fest verbunden. Wird das Fahrbetriebsmittel bewegt, so beginnt der Anker e eine pendelnde Bewegung und gestattet den Zähnen des Ankerrades d bis zu einem gewissen Grade zwischen seinen eigenen Zähnen hindurchzugehen, d. h. es wird bei jeder Geschwindigkeit ein Beharrungszustand in der Lage des Zeigerrahmens f bzw. des Zeigers eintreten und hiermit jederzeit die jeweilige Geschwindigkeit angezeigt werden. Die Bewegung (Schwingungszahl) des Ankers e wird durch ein sogenanntes Pendel m reguliert. Das Pendel (Schwinge) m ist kein freihängendes Pendel, sondern stellt eine um einen Drehpunkt q schwingende Masse dar. Der F. gibt die Geschwindigkeit am Zifferblatt jederzeit, am Streifen nach je 100 m zurückgelegten Weg an. Ferner markiert der Apparat die Zeit alle 1/2 (1) bzw. alle, 5 (10) Minuten und den Weg von 100 zu 100 m. Überdies besitzt der F. einen Schlagzeiger, der die erreichte größte Fahrgeschwindigkeit anzeigt. Der F. von Siemens und Halske beruht auf der Änderung der Feldstärke bei Bewegung des Rotors; mit dieser ändert sich auch die Spannung des erzeugten Wechselstromes. Die Bauart stellt sich als ein nach dem Induktortypus gebauter Wechselstromerzeuger in Verbindung mit einem aperiodischen Spannungmesser dar. Der Spannungsmesser ist ein Voltmeter nach Ferraris, dessen Skala empirisch in km/Std geeicht ist. (Dinglers Polytechnisches Journal 1903, Seite 491.) Der F. von Dettmar verwendet zur Bestimmung der Geschwindigkeit gleichfalls Elektrizität. Erregt man eine Wechselstrommaschine, so wird ihre Spannung abhängig von der Geschwindigkeit und somit ein Maß für die Geschwindigkeit geben. Man ist mithin in der Lage, an einem Voltmeter, das direkt in Kilometer für die Stunde geeicht ist, jederzeit die Geschwindigkeit abzulesen. Vervollkommt wurde der Apparat durch Verwendung von Drosselspulen, die durch einen vorhandenen Wechselstrom oder von pulsierendem Gleichstrom durchflössen werden, und andere Verbesserungen. (Glasers Annalen 1903, Bd. I, Seite 82.) F. und Radumdrehungszähler, die auf elektrischer Betätigung beruhen, wurden auch bei den Versuchsfahrten für elektrische Schnellbahnen auf der Strecke Marienfelde-Zossen verwendet. (Allgemeine Bauzeitung 1904, Seite 61.) Abb. 361. Fahrgeschwindigkeitsmesser. System Peyer, Farvarger & Co. Der F. von Frahm beruht auf der Anwendung der Resonanz, d. h. der Eigenschaft elastischer Körper, stark in Schwingung zu geraten, wenn sie von außen her rhytmische Anstöße empfangen, deren Schwingungszahl in der Zeiteinheit (Frequenz) mit der ihrer Eigenschwingung zusammenfällt. Das Element, auf dem sich der Frahmsche F. aufbaut, besteht aus einer Feder vom besten Uhrfederstahl oder einem anderen elastischen Stoff. Für gewöhnliche Verwendungszwecke ist eine solche Feder 0·25 mm dick, 3 mm breit und etwa 40 bis 55 mm lang. Nachdem verschiedene Geschwindigkeiten gemessen werden sollen, ist es nötig, eine entsprechende Anzahl von Federn, von denen <TEI> <text> <body> <div n="1"> <div type="lexiconEntry" n="2"> <p><pb facs="#f0472" n="455"/> einen Zeiger, der die Fahrgeschwindigkeiten auf einem Zifferblatt weist, ferner auf eine Registriervorrichtung, die das Geschwindigkeitsdiagramm auf einem Papierstreifen liefert (Glasers Annalen, 1879, Bd. V, S. 403).</p><lb/> <p>Der mit dem vorstehenden F. dem Grundgedanken nach übereinstimmende <hi rendition="#g">Petri</hi>sche Kontrollapparat besitzt außer dem Zifferblatt für die Fahrgeschwindigkeiten ein zweites für die zurückgelegten Wege und ein drittes für die Zeit.</p><lb/> <p>Auf ähnlichen Grundgedanken sind aufgebaut die F. von <hi rendition="#g">Horn</hi> (Glasers Annalen 1884, S. 130); <hi rendition="#g">Jähns</hi> (Glasers Annalen 1884, S. 2); <hi rendition="#g">Ponget</hi> (Portefeuille économique des machines 1882, S. 145); <hi rendition="#g">Pohl, Brettmann</hi> u. s. w.</p><lb/> <p rendition="#c"><hi rendition="#i">c)</hi><hi rendition="#g">Sonstige Vorrichtungen</hi>.</p><lb/> <p>Es sind hier noch verschiedenartige F. anzuführen, die ebenfalls nur an den Fahrzeugen angebracht werden, sich jedoch in keine der beiden vorstehenden Gruppen einreihen lassen.</p><lb/> <p>Der F. von <hi rendition="#g">Peyer, Favarger</hi> & <hi rendition="#g">Co</hi>. (Abb. 361) erhält seinen Antrieb vermittels der Welle <hi rendition="#i">a,</hi> die durch eine Fahrzeugachse in Umdrehung versetzt wird. Die Welle <hi rendition="#i">a</hi> treibt mittels zweier Stirnräder <hi rendition="#i">a</hi><hi rendition="#sub">1</hi> und <hi rendition="#i">a</hi><hi rendition="#sub">2</hi> die Schnecke <hi rendition="#i">b</hi> an. Die Schnecke greift in das Schneckenrad <hi rendition="#i">c</hi> ein, das mit einem Anker <hi rendition="#i">e</hi> fest verbunden ist. In das Ankerrad <hi rendition="#i">d</hi> greift ein schwingender Anker <hi rendition="#i">e</hi> ein, der mit dem Zeigerrahmen <hi rendition="#i">f</hi> verbunden ist. Der Zeigerrahmen <hi rendition="#i">f</hi> wird bei Drehung der Welle <hi rendition="#i">a,</hi> entgegengesetzt dem Sinne der Drehung des Uhrzeigers, mitgenommen. Eine Feder <hi rendition="#i">i</hi> sucht den Zeigerrahmen <hi rendition="#i">f</hi> stets im Sinne der Drehung des Uhrzeigers in seine Anfangsstellung zurückzudrehen.</p><lb/> <p>Mit dem Zeigerrahmen <hi rendition="#i">f</hi> ist der auf der Teilung spielende Zeiger fest verbunden. Wird das Fahrbetriebsmittel bewegt, so beginnt der Anker <hi rendition="#i">e</hi> eine pendelnde Bewegung und gestattet den Zähnen des Ankerrades <hi rendition="#i">d</hi> bis zu einem gewissen Grade zwischen seinen eigenen Zähnen hindurchzugehen, d. h. es wird bei jeder Geschwindigkeit ein Beharrungszustand in der Lage des Zeigerrahmens <hi rendition="#i">f</hi> bzw. des Zeigers eintreten und hiermit jederzeit die jeweilige Geschwindigkeit angezeigt werden. Die Bewegung (Schwingungszahl) des Ankers <hi rendition="#i">e</hi> wird durch ein sogenanntes Pendel <hi rendition="#i">m</hi> reguliert. Das Pendel (Schwinge) <hi rendition="#i">m</hi> ist kein freihängendes Pendel, sondern stellt eine um einen Drehpunkt <hi rendition="#i">q</hi> schwingende Masse dar. Der F. gibt die Geschwindigkeit am Zifferblatt jederzeit, am Streifen nach je 100 <hi rendition="#i">m</hi> zurückgelegten Weg an. Ferner markiert der Apparat die Zeit alle <hi rendition="#sup">1</hi>/<hi rendition="#sub">2</hi> (1) bzw. alle, 5 (10) Minuten und den Weg von 100 zu 100 <hi rendition="#i">m.</hi> Überdies besitzt der F. einen Schlagzeiger, der die erreichte größte Fahrgeschwindigkeit anzeigt.</p><lb/> <p>Der F. von <hi rendition="#g">Siemens und Halske</hi> beruht auf der Änderung der Feldstärke bei Bewegung des Rotors; mit dieser ändert sich auch die Spannung des erzeugten Wechselstromes. Die Bauart stellt sich als ein nach dem Induktortypus gebauter Wechselstromerzeuger in Verbindung mit einem aperiodischen Spannungmesser dar. Der Spannungsmesser ist ein Voltmeter nach Ferraris, dessen Skala empirisch in <hi rendition="#i">km</hi>/Std geeicht ist. (Dinglers Polytechnisches Journal 1903, Seite 491.)</p><lb/> <p>Der F. von <hi rendition="#g">Dettmar</hi> verwendet zur Bestimmung der Geschwindigkeit gleichfalls Elektrizität. Erregt man eine Wechselstrommaschine, so wird ihre Spannung abhängig von der Geschwindigkeit und somit ein Maß für die Geschwindigkeit geben. Man ist mithin in der Lage, an einem Voltmeter, das direkt in Kilometer für die Stunde geeicht ist, jederzeit die Geschwindigkeit abzulesen. Vervollkommt wurde der Apparat durch Verwendung von Drosselspulen, die durch einen vorhandenen Wechselstrom oder von pulsierendem Gleichstrom durchflössen werden, und andere Verbesserungen. (Glasers Annalen 1903, Bd. I, Seite 82.) F. und Radumdrehungszähler, die auf elektrischer Betätigung beruhen, wurden auch bei den Versuchsfahrten für elektrische Schnellbahnen auf der Strecke Marienfelde-Zossen verwendet. (Allgemeine Bauzeitung 1904, Seite 61.)</p><lb/> <figure facs="https://media.dwds.de/dta/images/roell_eisenbahnwesen04_1913/figures/roell_eisenbahnwesen04_1913_figure-0497.jpg" rendition="#c"> <head>Abb. 361. Fahrgeschwindigkeitsmesser. System Peyer, Farvarger & Co.</head><lb/> </figure><lb/> <p>Der F. von <hi rendition="#g">Frahm</hi> beruht auf der Anwendung der Resonanz, d. h. der Eigenschaft elastischer Körper, stark in Schwingung zu geraten, wenn sie von außen her rhytmische Anstöße empfangen, deren Schwingungszahl in der Zeiteinheit (Frequenz) mit der ihrer Eigenschwingung zusammenfällt. Das Element, auf dem sich der Frahmsche F. aufbaut, besteht aus einer Feder vom besten Uhrfederstahl oder einem anderen elastischen Stoff. Für gewöhnliche Verwendungszwecke ist eine solche Feder 0·25 <hi rendition="#i">mm</hi> dick, 3 <hi rendition="#i">mm</hi> breit und etwa 40 bis 55 <hi rendition="#i">mm</hi> lang. Nachdem verschiedene Geschwindigkeiten gemessen werden sollen, ist es nötig, eine entsprechende Anzahl von Federn, von denen </p> </div> </div> </body> </text> </TEI> [455/0472]
einen Zeiger, der die Fahrgeschwindigkeiten auf einem Zifferblatt weist, ferner auf eine Registriervorrichtung, die das Geschwindigkeitsdiagramm auf einem Papierstreifen liefert (Glasers Annalen, 1879, Bd. V, S. 403).
Der mit dem vorstehenden F. dem Grundgedanken nach übereinstimmende Petrische Kontrollapparat besitzt außer dem Zifferblatt für die Fahrgeschwindigkeiten ein zweites für die zurückgelegten Wege und ein drittes für die Zeit.
Auf ähnlichen Grundgedanken sind aufgebaut die F. von Horn (Glasers Annalen 1884, S. 130); Jähns (Glasers Annalen 1884, S. 2); Ponget (Portefeuille économique des machines 1882, S. 145); Pohl, Brettmann u. s. w.
c) Sonstige Vorrichtungen.
Es sind hier noch verschiedenartige F. anzuführen, die ebenfalls nur an den Fahrzeugen angebracht werden, sich jedoch in keine der beiden vorstehenden Gruppen einreihen lassen.
Der F. von Peyer, Favarger & Co. (Abb. 361) erhält seinen Antrieb vermittels der Welle a, die durch eine Fahrzeugachse in Umdrehung versetzt wird. Die Welle a treibt mittels zweier Stirnräder a1 und a2 die Schnecke b an. Die Schnecke greift in das Schneckenrad c ein, das mit einem Anker e fest verbunden ist. In das Ankerrad d greift ein schwingender Anker e ein, der mit dem Zeigerrahmen f verbunden ist. Der Zeigerrahmen f wird bei Drehung der Welle a, entgegengesetzt dem Sinne der Drehung des Uhrzeigers, mitgenommen. Eine Feder i sucht den Zeigerrahmen f stets im Sinne der Drehung des Uhrzeigers in seine Anfangsstellung zurückzudrehen.
Mit dem Zeigerrahmen f ist der auf der Teilung spielende Zeiger fest verbunden. Wird das Fahrbetriebsmittel bewegt, so beginnt der Anker e eine pendelnde Bewegung und gestattet den Zähnen des Ankerrades d bis zu einem gewissen Grade zwischen seinen eigenen Zähnen hindurchzugehen, d. h. es wird bei jeder Geschwindigkeit ein Beharrungszustand in der Lage des Zeigerrahmens f bzw. des Zeigers eintreten und hiermit jederzeit die jeweilige Geschwindigkeit angezeigt werden. Die Bewegung (Schwingungszahl) des Ankers e wird durch ein sogenanntes Pendel m reguliert. Das Pendel (Schwinge) m ist kein freihängendes Pendel, sondern stellt eine um einen Drehpunkt q schwingende Masse dar. Der F. gibt die Geschwindigkeit am Zifferblatt jederzeit, am Streifen nach je 100 m zurückgelegten Weg an. Ferner markiert der Apparat die Zeit alle 1/2 (1) bzw. alle, 5 (10) Minuten und den Weg von 100 zu 100 m. Überdies besitzt der F. einen Schlagzeiger, der die erreichte größte Fahrgeschwindigkeit anzeigt.
Der F. von Siemens und Halske beruht auf der Änderung der Feldstärke bei Bewegung des Rotors; mit dieser ändert sich auch die Spannung des erzeugten Wechselstromes. Die Bauart stellt sich als ein nach dem Induktortypus gebauter Wechselstromerzeuger in Verbindung mit einem aperiodischen Spannungmesser dar. Der Spannungsmesser ist ein Voltmeter nach Ferraris, dessen Skala empirisch in km/Std geeicht ist. (Dinglers Polytechnisches Journal 1903, Seite 491.)
Der F. von Dettmar verwendet zur Bestimmung der Geschwindigkeit gleichfalls Elektrizität. Erregt man eine Wechselstrommaschine, so wird ihre Spannung abhängig von der Geschwindigkeit und somit ein Maß für die Geschwindigkeit geben. Man ist mithin in der Lage, an einem Voltmeter, das direkt in Kilometer für die Stunde geeicht ist, jederzeit die Geschwindigkeit abzulesen. Vervollkommt wurde der Apparat durch Verwendung von Drosselspulen, die durch einen vorhandenen Wechselstrom oder von pulsierendem Gleichstrom durchflössen werden, und andere Verbesserungen. (Glasers Annalen 1903, Bd. I, Seite 82.) F. und Radumdrehungszähler, die auf elektrischer Betätigung beruhen, wurden auch bei den Versuchsfahrten für elektrische Schnellbahnen auf der Strecke Marienfelde-Zossen verwendet. (Allgemeine Bauzeitung 1904, Seite 61.)
[Abbildung Abb. 361. Fahrgeschwindigkeitsmesser. System Peyer, Farvarger & Co.
]
Der F. von Frahm beruht auf der Anwendung der Resonanz, d. h. der Eigenschaft elastischer Körper, stark in Schwingung zu geraten, wenn sie von außen her rhytmische Anstöße empfangen, deren Schwingungszahl in der Zeiteinheit (Frequenz) mit der ihrer Eigenschwingung zusammenfällt. Das Element, auf dem sich der Frahmsche F. aufbaut, besteht aus einer Feder vom besten Uhrfederstahl oder einem anderen elastischen Stoff. Für gewöhnliche Verwendungszwecke ist eine solche Feder 0·25 mm dick, 3 mm breit und etwa 40 bis 55 mm lang. Nachdem verschiedene Geschwindigkeiten gemessen werden sollen, ist es nötig, eine entsprechende Anzahl von Federn, von denen
Suche im WerkInformationen zum Werk
Download dieses Werks
XML (TEI P5) ·
HTML ·
Text Metadaten zum WerkTEI-Header · CMDI · Dublin Core Ansichten dieser Seite
Voyant Tools ?Language Resource Switchboard?FeedbackSie haben einen Fehler gefunden? Dann können Sie diesen über unsere Qualitätssicherungsplattform DTAQ melden. Kommentar zur DTA-AusgabeDieses Werk wurde im Rahmen des Moduls DTA-Erweiterungen (DTAE) digitalisiert. Weitere Informationen … zeno.org – Contumax GmbH & Co. KG: Bereitstellung der Texttranskription.
(2020-06-17T17:32:48Z)
Bitte beachten Sie, dass die aktuelle Transkription (und Textauszeichnung) mittlerweile nicht mehr dem Stand zum Zeitpunkt der Übernahme des Werkes in das DTA entsprechen muss.
Andreas Nolda: Bearbeitung der digitalen Edition.
(2020-06-17T17:32:48Z)
Weitere Informationen:Bogensignaturen: nicht übernommen; Druckfehler: keine Angabe; fremdsprachliches Material: keine Angabe; Geminations-/Abkürzungsstriche: keine Angabe; Hervorhebungen (Antiqua, Sperrschrift, Kursive etc.): gekennzeichnet; Hervorhebungen I/J in Fraktur: keine Angabe; i/j in Fraktur: keine Angabe; Kolumnentitel: nicht übernommen; Kustoden: keine Angabe; langes s (ſ): keine Angabe; Normalisierungen: keine Angabe; rundes r (ꝛ): keine Angabe; Seitenumbrüche markiert: ja; Silbentrennung: aufgelöst; u/v bzw. U/V: keine Angabe; Vokale mit übergest. e: keine Angabe; Vollständigkeit: keine Angabe; Zeichensetzung: keine Angabe; Zeilenumbrüche markiert: nein Spaltenumbrüche sind nicht markiert. Wiederholungszeichen (") wurden aufgelöst. Komplexe Formeln und Tabellen sind als Grafiken wiedergegeben. Die Abbildungen im Text stammen von zeno.org – Contumax GmbH & Co. KG.
|
Insbesondere im Hinblick auf die §§ 86a StGB und 130 StGB wird festgestellt, dass die auf diesen Seiten abgebildeten Inhalte weder in irgendeiner Form propagandistischen Zwecken dienen, oder Werbung für verbotene Organisationen oder Vereinigungen darstellen, oder nationalsozialistische Verbrechen leugnen oder verharmlosen, noch zum Zwecke der Herabwürdigung der Menschenwürde gezeigt werden. Die auf diesen Seiten abgebildeten Inhalte (in Wort und Bild) dienen im Sinne des § 86 StGB Abs. 3 ausschließlich historischen, sozial- oder kulturwissenschaftlichen Forschungszwecken. Ihre Veröffentlichung erfolgt in der Absicht, Wissen zur Anregung der intellektuellen Selbstständigkeit und Verantwortungsbereitschaft des Staatsbürgers zu vermitteln und damit der Förderung seiner Mündigkeit zu dienen.
2007–2024 Deutsches Textarchiv, Berlin-Brandenburgische Akademie der Wissenschaften.
Kontakt: redaktion(at)deutschestextarchiv.de. |