Röll, [Victor] von (Hrsg.): Enzyklopädie des Eisenbahnwesens. 2. Aufl. Bd. 9. Berlin, Wien, 1921.die Entfernung bei K und die Höhe bei H ab oder sticht den Punkt ins Papier ein, ohne K abzulesen, wobei der Kartenmaßstab 1 : 1000 oder 1 : 2500 vorgesehen ist. Der selbsttätige Rechenvorgang ist aus Abb. 259 ersichtlich; die Linie O S entspricht der Zielrichtung. Das selbstreduzierende Tachymeter von Hammer-Fennel. Die Lattenablesung in cm gibt die Abb. 258. Tachymeter Puller-Breithaupt. Abb. 259. die Entfernung bei K und die Höhe bei H ab oder sticht den Punkt ins Papier ein, ohne K abzulesen, wobei der Kartenmaßstab 1 : 1000 oder 1 : 2500 vorgesehen ist. Der selbsttätige Rechenvorgang ist aus Abb. 259 ersichtlich; die Linie O S entspricht der Zielrichtung. Das selbstreduzierende Tachymeter von Hammer-Fennel. Die Lattenablesung in cm gibt die Abb. 258. Tachymeter Puller-Breithaupt. Abb. 259. <TEI> <text> <body> <div n="1"> <div type="lexiconEntry" n="2"> <p><pb facs="#f0271" n="259"/> die Entfernung bei <hi rendition="#i">K</hi> und die Höhe bei <hi rendition="#i">H</hi> ab oder sticht den Punkt ins Papier ein, ohne <hi rendition="#i">K</hi> abzulesen, wobei der Kartenmaßstab 1 : 1000 oder 1 : 2500 vorgesehen ist. Der selbsttätige Rechenvorgang ist aus Abb. 259 ersichtlich; die Linie <hi rendition="#i">O S</hi> entspricht der Zielrichtung.</p><lb/> <p>Das <hi rendition="#g">selbstreduzierende Tachymeter von Hammer-Fennel</hi>. Die Lattenablesung in <hi rendition="#i">cm</hi> gibt die<lb/><figure facs="https://media.dwds.de/dta/images/roell_eisenbahnwesen09_1921/figures/roell_eisenbahnwesen09_1921_figure-0362.jpg" rendition="#c"><head>Abb. 258. Tachymeter Puller-Breithaupt.</head><lb/></figure><lb/> Horizontalentfernung in <hi rendition="#i">m</hi> und den 20. Teil des Höhenunterschieds unmittelbar an. Statt geradliniger Distanzfäden sind Kurven vorhanden, deren Abstand sich im Verhältnis cos<hi rendition="#sup">2</hi>α : 1 verkleinert; für die Höhenablesung ist eine besondere zweiästige Kurve vorhanden. Diese Kurvenplatte, photographisch auf eine Glasplatte übertragen, steht seitlich des Fernrohrmantels über der etwas nach unten versetzten Kippachse und ist fest mit dem Fernrohrträger verbunden. Im Fernrohr selbst ist nur der Nivellierfaden (Nullfaden) angebracht. Im Mantel des anallaktischen Zielfernrohrs ist ein Ablesefernrohr derart eingebaut, daß das gemeinschaftliche Okular in der einen Hälfte des Gesichtsfeldes das Bild der Latte, in der andern die Kurven zeigt. Die vertikale Trennungslinie ist Ablesekante. Abb. 261 zeigt im Horizontalschnitt die Anordnung. Die vertikale Kurvenplatte <hi rendition="#i"><hi rendition="#g">DD</hi></hi> wird auf dem Weg über das Prisma <hi rendition="#i">P',</hi> die Linse <hi rendition="#i">L</hi> und das Prisma <hi rendition="#i">P''</hi> in der Fadenkreuzebene <hi rendition="#i">A</hi> des Zielfernrohrs abgebildet. Durch Verschiebung des Objektivs wird in dieser Ebene auch das Lattenbild entworfen. Durch das Okular sieht man das in Abb. 262 dargestellte Bild, in dem man an der Trennungslinie <hi rendition="#i"><hi rendition="#g">AA</hi></hi> der Gesichtsfelder beider Fernrohre ablesen würde: 12·4 und – 10·1 <hi rendition="#i">cm,</hi> was <hi rendition="#i">E</hi> = 12·4 <hi rendition="#i">m</hi> und <hi rendition="#i">h</hi> = – 20 · 10·1 <hi rendition="#i">cm</hi> = – 2·02 <hi rendition="#i">m</hi> ergibt. Die Ablesekurven sind in Abb. 263 abgezeichnet. Den Kreisbogen <hi rendition="#i"><hi rendition="#g">GOG</hi></hi> um die Mitte der Kippachse stellt man auf den in Instrumentenhöhe 1·4 <hi rendition="#i">m</hi> an der Latte angebrachten Nullpunkt der Teilung ein und liest an der Kurve <hi rendition="#i">EE</hi><hi rendition="#sub">0</hi><hi rendition="#i">E</hi> den Betrag für die Entfernung ab. Die Ablesung für den Höhenunterschied erhält man an der Kurve – <hi rendition="#i"><hi rendition="#g">HO</hi></hi> + <hi rendition="#i">H.</hi> Beim Kippen des Fernrohrs stellen sich die verschiedenen Radien <hi rendition="#i"><hi rendition="#g">AB</hi></hi><lb/><figure facs="https://media.dwds.de/dta/images/roell_eisenbahnwesen09_1921/figures/roell_eisenbahnwesen09_1921_figure-0363.jpg" rendition="#c"><head>Abb. 259.</head><lb/></figure><lb/> zwischen den Enden der Kurvenplatte an der Ablesekante ein, indem die Kurven scheinbar quer zur Kante wandern.</p><lb/> </div> </div> </body> </text> </TEI> [259/0271]
die Entfernung bei K und die Höhe bei H ab oder sticht den Punkt ins Papier ein, ohne K abzulesen, wobei der Kartenmaßstab 1 : 1000 oder 1 : 2500 vorgesehen ist. Der selbsttätige Rechenvorgang ist aus Abb. 259 ersichtlich; die Linie O S entspricht der Zielrichtung.
Das selbstreduzierende Tachymeter von Hammer-Fennel. Die Lattenablesung in cm gibt die
[Abbildung Abb. 258. Tachymeter Puller-Breithaupt.
]
Horizontalentfernung in m und den 20. Teil des Höhenunterschieds unmittelbar an. Statt geradliniger Distanzfäden sind Kurven vorhanden, deren Abstand sich im Verhältnis cos2α : 1 verkleinert; für die Höhenablesung ist eine besondere zweiästige Kurve vorhanden. Diese Kurvenplatte, photographisch auf eine Glasplatte übertragen, steht seitlich des Fernrohrmantels über der etwas nach unten versetzten Kippachse und ist fest mit dem Fernrohrträger verbunden. Im Fernrohr selbst ist nur der Nivellierfaden (Nullfaden) angebracht. Im Mantel des anallaktischen Zielfernrohrs ist ein Ablesefernrohr derart eingebaut, daß das gemeinschaftliche Okular in der einen Hälfte des Gesichtsfeldes das Bild der Latte, in der andern die Kurven zeigt. Die vertikale Trennungslinie ist Ablesekante. Abb. 261 zeigt im Horizontalschnitt die Anordnung. Die vertikale Kurvenplatte DD wird auf dem Weg über das Prisma P', die Linse L und das Prisma P'' in der Fadenkreuzebene A des Zielfernrohrs abgebildet. Durch Verschiebung des Objektivs wird in dieser Ebene auch das Lattenbild entworfen. Durch das Okular sieht man das in Abb. 262 dargestellte Bild, in dem man an der Trennungslinie AA der Gesichtsfelder beider Fernrohre ablesen würde: 12·4 und – 10·1 cm, was E = 12·4 m und h = – 20 · 10·1 cm = – 2·02 m ergibt. Die Ablesekurven sind in Abb. 263 abgezeichnet. Den Kreisbogen GOG um die Mitte der Kippachse stellt man auf den in Instrumentenhöhe 1·4 m an der Latte angebrachten Nullpunkt der Teilung ein und liest an der Kurve EE0E den Betrag für die Entfernung ab. Die Ablesung für den Höhenunterschied erhält man an der Kurve – HO + H. Beim Kippen des Fernrohrs stellen sich die verschiedenen Radien AB
[Abbildung Abb. 259.
]
zwischen den Enden der Kurvenplatte an der Ablesekante ein, indem die Kurven scheinbar quer zur Kante wandern.
Suche im WerkInformationen zum Werk
Download dieses Werks
XML (TEI P5) ·
HTML ·
Text Metadaten zum WerkTEI-Header · CMDI · Dublin Core Ansichten dieser Seite
Voyant Tools ?Language Resource Switchboard?FeedbackSie haben einen Fehler gefunden? Dann können Sie diesen über unsere Qualitätssicherungsplattform DTAQ melden. Kommentar zur DTA-AusgabeDieses Werk wurde im Rahmen des Moduls DTA-Erweiterungen (DTAE) digitalisiert. Weitere Informationen … zeno.org – Contumax GmbH & Co. KG: Bereitstellung der Texttranskription.
(2020-06-17T17:32:52Z)
Bitte beachten Sie, dass die aktuelle Transkription (und Textauszeichnung) mittlerweile nicht mehr dem Stand zum Zeitpunkt der Übernahme des Werkes in das DTA entsprechen muss.
Andreas Nolda: Bearbeitung der digitalen Edition.
(2020-06-17T17:32:52Z)
Weitere Informationen:Bogensignaturen: nicht übernommen; Druckfehler: keine Angabe; fremdsprachliches Material: keine Angabe; Geminations-/Abkürzungsstriche: keine Angabe; Hervorhebungen (Antiqua, Sperrschrift, Kursive etc.): gekennzeichnet; Hervorhebungen I/J in Fraktur: keine Angabe; i/j in Fraktur: keine Angabe; Kolumnentitel: nicht übernommen; Kustoden: keine Angabe; langes s (ſ): keine Angabe; Normalisierungen: keine Angabe; rundes r (ꝛ): keine Angabe; Seitenumbrüche markiert: ja; Silbentrennung: aufgelöst; u/v bzw. U/V: keine Angabe; Vokale mit übergest. e: keine Angabe; Vollständigkeit: keine Angabe; Zeichensetzung: keine Angabe; Zeilenumbrüche markiert: nein Spaltenumbrüche sind nicht markiert. Wiederholungszeichen (") wurden aufgelöst. Komplexe Formeln und Tabellen sind als Grafiken wiedergegeben. Die Abbildungen im Text stammen von zeno.org – Contumax GmbH & Co. KG.
|
Insbesondere im Hinblick auf die §§ 86a StGB und 130 StGB wird festgestellt, dass die auf diesen Seiten abgebildeten Inhalte weder in irgendeiner Form propagandistischen Zwecken dienen, oder Werbung für verbotene Organisationen oder Vereinigungen darstellen, oder nationalsozialistische Verbrechen leugnen oder verharmlosen, noch zum Zwecke der Herabwürdigung der Menschenwürde gezeigt werden. Die auf diesen Seiten abgebildeten Inhalte (in Wort und Bild) dienen im Sinne des § 86 StGB Abs. 3 ausschließlich historischen, sozial- oder kulturwissenschaftlichen Forschungszwecken. Ihre Veröffentlichung erfolgt in der Absicht, Wissen zur Anregung der intellektuellen Selbstständigkeit und Verantwortungsbereitschaft des Staatsbürgers zu vermitteln und damit der Förderung seiner Mündigkeit zu dienen.
2007–2024 Deutsches Textarchiv, Berlin-Brandenburgische Akademie der Wissenschaften.
Kontakt: redaktion(at)deutschestextarchiv.de. |