Anmelden (DTAQ) DWDS     dlexDB     CLARIN-D

Schröder, Ernst: Vorlesungen über die Algebra der Logik. Bd. 2, Abt. 1. Leipzig, 1891.

Bild:
<< vorherige Seite
Dreiundzwanzigste Vorlesung.
11' · 11' = (A1 + B1 = 1) (B1 + C1 = 1) = (A1 C1 B + B1 = 1) (1 = 1) = i.
11' · 12' = (A1 + B1 = 1) (B1 + C = 1) = (A1 C B + B1 = 1) (1 = 1) = i.
11' · 13' = (A1 + B1 = 1) (B + C1 = 1) = (A1 B + C1 B1 = 1) (A1 + C1 = 1) = aA, C,

Camestres, Calemes, desgleichen in C, A angesetzt: Celarent und
Cesare.

11' · 14' = (A1 + B1 = 1) (B + C = 1) = (A1 B + C B1 = 1) (A1 + C = 1) = cA, C.
11' · 111' = (A1 + B1 = 1) (B C 0) = (A1 B + B1 = 1) (C B 0)
(C A1 0) = b1A, C,

in C, A angesetzt: Ferio, Festino, Ferison, Fresison.

11' · 121' = (A1 + B1 = 1) (B C1 0) = (A1 B + B1 = 1) (C1 B 0)
(C1 A1 0) = l1A, C.
11' · 131' = (A1 + B1 = 1) (B1 C 0) = (A1 B + B1 = 1) (C B1 0) (C 0).
11' · 141' = (A1 + B1 = 1) (B1 C1 0) = (A1 B + B1 = 1) (C1 B1 0) (C1 0).
12' · 12' = (A1 + B = 1) (B1 + C = 1) = (C B + A1 B1 = 1) (C + A1 = 1) = cA, C,

Barbara.

12' · 13' = (A1 + B = 1) (B + C1 = 1) = (B + A1 C1 B1 = 1) (1 = 1) = i.
12' · 14' = (A1 + B = 1) (B + C = 1) = (B + A1 C B1 = 1) (1 = 1) = i.
12' · 111' = (A1 + B = 1) (B C 0) = (B + A1 B1 = 1) (C B 0) (C 0).
12' · 121' = (A1 + B = 1) (B C1 0) = (B + A1 B1 = 1) (C1 B 0) (C1 0).
12' · 131' = (A1 + B = 1) (B1 C 0) = (B + A1 B1 = 1) (C B1 0)
(C A1 0) = b1A, C,

in C, A angesetzt: Baroco.

12' · 141' = (A1 + B = 1) (B1 C1 0) = (B + A1 B1 = 1) (C1 B1 0)
(C1 A1 0) = l1A, C.
13' · 13' = (A + B1 = 1) (B + C1 = 1) = (A B + C1 B1 = 1) (A + C1 = 1) = bA, C,

in C, A: Barbara.

13' · 14' = (A + B1 = 1) (B + C = 1) = (A B + C B1 = 1) (A + C = 1) = lA, C.
13' · 111' = (A + B1 = 1) (B C 0) = (A B + B1 = 1) (C B 0)
(C A 0) = a1A, C,

Disamis, Dimatis, desgleichen in C, A: Darii und Datisi.

Dreiundzwanzigste Vorlesung.
11’ · 11’ = (A1 + B1 = 1) (B1 + C1 = 1) = (A1 C1 B + B1 = 1) (1 = 1) = i.
11’ · 12’ = (A1 + B1 = 1) (B1 + C = 1) = (A1 C B + B1 = 1) (1 = 1) = i.
11’ · 13’ = (A1 + B1 = 1) (B + C1 = 1) = (A1 B + C1 B1 = 1) (A1 + C1 = 1) = aA, C,

Camestres, Calemes, desgleichen in C, A angesetzt: Celarent und
Cesare.

11’ · 14’ = (A1 + B1 = 1) (B + C = 1) = (A1 B + C B1 = 1) (A1 + C = 1) = cA, C.
11’ · 111’ = (A1 + B1 = 1) (B C ≠ 0) = (A1 B + B1 = 1) (C B ≠ 0)
(C A1 ≠ 0) = b1A, C,

in C, A angesetzt: Ferio, Festino, Ferison, Fresison.

11’ · 121’ = (A1 + B1 = 1) (B C1 ≠ 0) = (A1 B + B1 = 1) (C1 B ≠ 0)
(C1 A1 ≠ 0) = l1A, C.
11’ · 131’ = (A1 + B1 = 1) (B1 C ≠ 0) = (A1 B + B1 = 1) (C B1 ≠ 0) (C ≠ 0).
11’ · 141’ = (A1 + B1 = 1) (B1 C1 ≠ 0) = (A1 B + B1 = 1) (C1 B1 ≠ 0) (C1 ≠ 0).
12’ · 12’ = (A1 + B = 1) (B1 + C = 1) = (C B + A1 B1 = 1) (C + A1 = 1) = cA, C,

Barbara.

12’ · 13’ = (A1 + B = 1) (B + C1 = 1) = (B + A1 C1 B1 = 1) (1 = 1) = i.
12’ · 14’ = (A1 + B = 1) (B + C = 1) = (B + A1 C B1 = 1) (1 = 1) = i.
12’ · 111’ = (A1 + B = 1) (B C ≠ 0) = (B + A1 B1 = 1) (C B ≠ 0) (C ≠ 0).
12’ · 121’ = (A1 + B = 1) (B C1 ≠ 0) = (B + A1 B1 = 1) (C1 B ≠ 0) (C1 ≠ 0).
12’ · 131’ = (A1 + B = 1) (B1 C ≠ 0) = (B + A1 B1 = 1) (C B1 ≠ 0)
(C A1 ≠ 0) = b1A, C,

in C, A angesetzt: Baroco.

12’ · 141’ = (A1 + B = 1) (B1 C1 ≠ 0) = (B + A1 B1 = 1) (C1 B1 ≠ 0)
(C1 A1 ≠ 0) = l1A, C.
13’ · 13’ = (A + B1 = 1) (B + C1 = 1) = (A B + C1 B1 = 1) (A + C1 = 1) = bA, C,

in C, A: Barbara.

13’ · 14’ = (A + B1 = 1) (B + C = 1) = (A B + C B1 = 1) (A + C = 1) = lA, C.
13’ · 111’ = (A + B1 = 1) (B C ≠ 0) = (A B + B1 = 1) (C B ≠ 0)
(C A ≠ 0) = a1A, C,

Disamis, Dimatis, desgleichen in C, A: Darii und Datisi.

<TEI>
  <text>
    <body>
      <div n="1">
        <div n="2">
          <div n="3">
            <pb facs="#f0382" n="358"/>
            <fw place="top" type="header">Dreiundzwanzigste Vorlesung.</fw><lb/>
            <list>
              <item>11&#x2019; · 11&#x2019; = (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> = 1) (<hi rendition="#i">B</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">C</hi><hi rendition="#sub">1</hi> = 1) = (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> <hi rendition="#i">C</hi><hi rendition="#sub">1</hi> <hi rendition="#i">B</hi> + <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> = 1) <choice><orig>&#xFFFC;</orig><reg>&#x2286;</reg></choice> (1 = 1) = i.</item><lb/>
              <item>11&#x2019; · 12&#x2019; = (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> = 1) (<hi rendition="#i">B</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">C</hi> = 1) = (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> <hi rendition="#i">C B</hi> + <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> = 1) <choice><orig>&#xFFFC;</orig><reg>&#x2286;</reg></choice> (1 = 1) = i.</item><lb/>
              <item>11&#x2019; · 13&#x2019; = (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> = 1) (<hi rendition="#i">B</hi> + <hi rendition="#i">C</hi><hi rendition="#sub">1</hi> = 1) = (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> <hi rendition="#i">B</hi> + <hi rendition="#i">C</hi><hi rendition="#sub">1</hi> <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> = 1) <choice><orig>&#xFFFC;</orig><reg>&#x2286;</reg></choice> (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">C</hi><hi rendition="#sub">1</hi> = 1) = <hi rendition="#i">a<hi rendition="#sup">A, C</hi></hi>,</item>
            </list><lb/>
            <p><hi rendition="#g">Camestres</hi>, <hi rendition="#g">Calemes</hi>, desgleichen in <hi rendition="#i">C</hi>, <hi rendition="#i">A</hi> angesetzt: <hi rendition="#g">Celarent</hi> und<lb/><hi rendition="#g">Cesare</hi>.</p><lb/>
            <list>
              <item>11&#x2019; · 14&#x2019; = (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> = 1) (<hi rendition="#i">B</hi> + <hi rendition="#i">C</hi> = 1) = (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> <hi rendition="#i">B</hi> + <hi rendition="#i">C B</hi><hi rendition="#sub">1</hi> = 1) <choice><orig>&#xFFFC;</orig><reg>&#x2286;</reg></choice> (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">C</hi> = 1) = <hi rendition="#i">c</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">C</hi></hi>.</item><lb/>
              <item>11&#x2019; · 11<hi rendition="#sub">1</hi>&#x2019; = (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> = 1) (<hi rendition="#i">B C</hi> &#x2260; 0) = (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> <hi rendition="#i">B</hi> + <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> = 1) (<hi rendition="#i">C B</hi> &#x2260; 0) <choice><orig>&#xFFFC;</orig><reg>&#x2286;</reg></choice><lb/><choice><orig>&#xFFFC;</orig><reg>&#x2286;</reg></choice> (<hi rendition="#i">C A</hi><hi rendition="#sub">1</hi> &#x2260; 0) = <hi rendition="#i">b</hi><hi rendition="#sub">1</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">C</hi></hi>,</item>
            </list><lb/>
            <p>in <hi rendition="#i">C</hi>, <hi rendition="#i">A</hi> angesetzt: <hi rendition="#g">Ferio</hi>, <hi rendition="#g">Festino</hi>, <hi rendition="#g">Ferison</hi>, <hi rendition="#g">Fresison</hi>.</p><lb/>
            <list>
              <item>11&#x2019; · 12<hi rendition="#sub">1</hi>&#x2019; = (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> = 1) (<hi rendition="#i">B C</hi><hi rendition="#sub">1</hi> &#x2260; 0) = (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> <hi rendition="#i">B</hi> + <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> = 1) (<hi rendition="#i">C</hi><hi rendition="#sub">1</hi> <hi rendition="#i">B</hi> &#x2260; 0) <choice><orig>&#xFFFC;</orig><reg>&#x2286;</reg></choice><lb/><choice><orig>&#xFFFC;</orig><reg>&#x2286;</reg></choice> (<hi rendition="#i">C</hi><hi rendition="#sub">1</hi> <hi rendition="#i">A</hi><hi rendition="#sub">1</hi> &#x2260; 0) = <hi rendition="#i">l</hi><hi rendition="#sub">1</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">C</hi></hi>.</item><lb/>
              <item>11&#x2019; · 13<hi rendition="#sub">1</hi>&#x2019; = (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> = 1) (<hi rendition="#i">B</hi><hi rendition="#sub">1</hi> <hi rendition="#i">C</hi> &#x2260; 0) = (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> <hi rendition="#i">B</hi> + <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> = 1) (<hi rendition="#i">C B</hi><hi rendition="#sub">1</hi> &#x2260; 0) <choice><orig>&#xFFFC;</orig><reg>&#x2286;</reg></choice> (<hi rendition="#i">C</hi> &#x2260; 0).</item><lb/>
              <item>11&#x2019; · 14<hi rendition="#sub">1</hi>&#x2019; = (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> = 1) (<hi rendition="#i">B</hi><hi rendition="#sub">1</hi> <hi rendition="#i">C</hi><hi rendition="#sub">1</hi> &#x2260; 0) = (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> <hi rendition="#i">B</hi> + <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> = 1) (<hi rendition="#i">C</hi><hi rendition="#sub">1</hi> <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> &#x2260; 0) <choice><orig>&#xFFFC;</orig><reg>&#x2286;</reg></choice> (<hi rendition="#i">C</hi><hi rendition="#sub">1</hi> &#x2260; 0).</item><lb/>
              <item>12&#x2019; · 12&#x2019; = (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">B</hi> = 1) (<hi rendition="#i">B</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">C</hi> = 1) = (<hi rendition="#i">C B</hi> + <hi rendition="#i">A</hi><hi rendition="#sub">1</hi> <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> = 1) <choice><orig>&#xFFFC;</orig><reg>&#x2286;</reg></choice> (<hi rendition="#i">C</hi> + <hi rendition="#i">A</hi><hi rendition="#sub">1</hi> = 1) = <hi rendition="#i">c</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">C</hi></hi>,</item>
            </list><lb/>
            <p><hi rendition="#g">Barbara</hi>.</p><lb/>
            <list>
              <item>12&#x2019; · 13&#x2019; = (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">B</hi> = 1) (<hi rendition="#i">B</hi> + <hi rendition="#i">C</hi><hi rendition="#sub">1</hi> = 1) = (<hi rendition="#i">B</hi> + <hi rendition="#i">A</hi><hi rendition="#sub">1</hi> <hi rendition="#i">C</hi><hi rendition="#sub">1</hi> <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> = 1) <choice><orig>&#xFFFC;</orig><reg>&#x2286;</reg></choice> (1 = 1) = i.</item><lb/>
              <item>12&#x2019; · 14&#x2019; = (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">B</hi> = 1) (<hi rendition="#i">B</hi> + <hi rendition="#i">C</hi> = 1) = (<hi rendition="#i">B</hi> + <hi rendition="#i">A</hi><hi rendition="#sub">1</hi> <hi rendition="#i">C B</hi><hi rendition="#sub">1</hi> = 1) <choice><orig>&#xFFFC;</orig><reg>&#x2286;</reg></choice> (1 = 1) = i.</item><lb/>
              <item>12&#x2019; · 11<hi rendition="#sub">1</hi>&#x2019; = (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">B</hi> = 1) (<hi rendition="#i">B C</hi> &#x2260; 0) = (<hi rendition="#i">B</hi> + <hi rendition="#i">A</hi><hi rendition="#sub">1</hi> <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> = 1) (<hi rendition="#i">C B</hi> &#x2260; 0) <choice><orig>&#xFFFC;</orig><reg>&#x2286;</reg></choice> (<hi rendition="#i">C</hi> &#x2260; 0).</item><lb/>
              <item>12&#x2019; · 12<hi rendition="#sub">1</hi>&#x2019; = (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">B</hi> = 1) (<hi rendition="#i">B C</hi><hi rendition="#sub">1</hi> &#x2260; 0) = (<hi rendition="#i">B</hi> + <hi rendition="#i">A</hi><hi rendition="#sub">1</hi> <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> = 1) (<hi rendition="#i">C</hi><hi rendition="#sub">1</hi> <hi rendition="#i">B</hi> &#x2260; 0) <choice><orig>&#xFFFC;</orig><reg>&#x2286;</reg></choice> (<hi rendition="#i">C</hi><hi rendition="#sub">1</hi> &#x2260; 0).</item><lb/>
              <item>12&#x2019; · 13<hi rendition="#sub">1</hi>&#x2019; = (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">B</hi> = 1) (<hi rendition="#i">B</hi><hi rendition="#sub">1</hi> <hi rendition="#i">C</hi> &#x2260; 0) = (<hi rendition="#i">B</hi> + <hi rendition="#i">A</hi><hi rendition="#sub">1</hi> <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> = 1) (<hi rendition="#i">C B</hi><hi rendition="#sub">1</hi> &#x2260; 0) <choice><orig>&#xFFFC;</orig><reg>&#x2286;</reg></choice><lb/><choice><orig>&#xFFFC;</orig><reg>&#x2286;</reg></choice> (<hi rendition="#i">C A</hi><hi rendition="#sub">1</hi> &#x2260; 0) = <hi rendition="#i">b</hi><hi rendition="#sub">1</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">C</hi></hi>,</item>
            </list><lb/>
            <p>in <hi rendition="#i">C</hi>, <hi rendition="#i">A</hi> angesetzt: <hi rendition="#g">Baroco</hi>.</p><lb/>
            <list>
              <item>12&#x2019; · 14<hi rendition="#sub">1</hi>&#x2019; = (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">B</hi> = 1) (<hi rendition="#i">B</hi><hi rendition="#sub">1</hi> <hi rendition="#i">C</hi><hi rendition="#sub">1</hi> &#x2260; 0) = (<hi rendition="#i">B</hi> + <hi rendition="#i">A</hi><hi rendition="#sub">1</hi> <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> = 1) (<hi rendition="#i">C</hi><hi rendition="#sub">1</hi> <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> &#x2260; 0) <choice><orig>&#xFFFC;</orig><reg>&#x2286;</reg></choice><lb/><choice><orig>&#xFFFC;</orig><reg>&#x2286;</reg></choice> (<hi rendition="#i">C</hi><hi rendition="#sub">1</hi> <hi rendition="#i">A</hi><hi rendition="#sub">1</hi> &#x2260; 0) = <hi rendition="#i">l</hi><hi rendition="#sub">1</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">C</hi></hi>.</item><lb/>
              <item>13&#x2019; · 13&#x2019; = (<hi rendition="#i">A</hi> + <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> = 1) (<hi rendition="#i">B</hi> + <hi rendition="#i">C</hi><hi rendition="#sub">1</hi> = 1) = (<hi rendition="#i">A B</hi> + <hi rendition="#i">C</hi><hi rendition="#sub">1</hi> <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> = 1) <choice><orig>&#xFFFC;</orig><reg>&#x2286;</reg></choice> (<hi rendition="#i">A</hi> + <hi rendition="#i">C</hi><hi rendition="#sub">1</hi> = 1) = <hi rendition="#i">b</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">C</hi></hi>,</item>
            </list><lb/>
            <p>in <hi rendition="#i">C</hi>, <hi rendition="#i">A</hi>: <hi rendition="#g">Barbara</hi>.</p><lb/>
            <list>
              <item>13&#x2019; · 14&#x2019; = (<hi rendition="#i">A</hi> + <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> = 1) (<hi rendition="#i">B</hi> + <hi rendition="#i">C</hi> = 1) = (<hi rendition="#i">A B</hi> + <hi rendition="#i">C B</hi><hi rendition="#sub">1</hi> = 1) <choice><orig>&#xFFFC;</orig><reg>&#x2286;</reg></choice> (<hi rendition="#i">A</hi> + <hi rendition="#i">C</hi> = 1) = <hi rendition="#i">l</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">C</hi></hi>.</item><lb/>
              <item>13&#x2019; · 11<hi rendition="#sub">1</hi>&#x2019; = (<hi rendition="#i">A</hi> + <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> = 1) (<hi rendition="#i">B C</hi> &#x2260; 0) = (<hi rendition="#i">A B</hi> + <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> = 1) (<hi rendition="#i">C B</hi> &#x2260; 0) <choice><orig>&#xFFFC;</orig><reg>&#x2286;</reg></choice><lb/><choice><orig>&#xFFFC;</orig><reg>&#x2286;</reg></choice> (<hi rendition="#i">C A</hi> &#x2260; 0) = <hi rendition="#i">a</hi><hi rendition="#sub">1</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">C</hi></hi>,</item>
            </list><lb/>
            <p><hi rendition="#g">Disamis</hi>, <hi rendition="#g">Dimatis</hi>, desgleichen in <hi rendition="#i">C</hi>, <hi rendition="#i">A</hi>: <hi rendition="#g">Darii</hi> und <hi rendition="#g">Datisi</hi>.</p><lb/>
          </div>
        </div>
      </div>
    </body>
  </text>
</TEI>
[358/0382] Dreiundzwanzigste Vorlesung. 11’ · 11’ = (A1 + B1 = 1) (B1 + C1 = 1) = (A1 C1 B + B1 = 1)  (1 = 1) = i. 11’ · 12’ = (A1 + B1 = 1) (B1 + C = 1) = (A1 C B + B1 = 1)  (1 = 1) = i. 11’ · 13’ = (A1 + B1 = 1) (B + C1 = 1) = (A1 B + C1 B1 = 1)  (A1 + C1 = 1) = aA, C, Camestres, Calemes, desgleichen in C, A angesetzt: Celarent und Cesare. 11’ · 14’ = (A1 + B1 = 1) (B + C = 1) = (A1 B + C B1 = 1)  (A1 + C = 1) = cA, C. 11’ · 111’ = (A1 + B1 = 1) (B C ≠ 0) = (A1 B + B1 = 1) (C B ≠ 0)   (C A1 ≠ 0) = b1A, C, in C, A angesetzt: Ferio, Festino, Ferison, Fresison. 11’ · 121’ = (A1 + B1 = 1) (B C1 ≠ 0) = (A1 B + B1 = 1) (C1 B ≠ 0)   (C1 A1 ≠ 0) = l1A, C. 11’ · 131’ = (A1 + B1 = 1) (B1 C ≠ 0) = (A1 B + B1 = 1) (C B1 ≠ 0)  (C ≠ 0). 11’ · 141’ = (A1 + B1 = 1) (B1 C1 ≠ 0) = (A1 B + B1 = 1) (C1 B1 ≠ 0)  (C1 ≠ 0). 12’ · 12’ = (A1 + B = 1) (B1 + C = 1) = (C B + A1 B1 = 1)  (C + A1 = 1) = cA, C, Barbara. 12’ · 13’ = (A1 + B = 1) (B + C1 = 1) = (B + A1 C1 B1 = 1)  (1 = 1) = i. 12’ · 14’ = (A1 + B = 1) (B + C = 1) = (B + A1 C B1 = 1)  (1 = 1) = i. 12’ · 111’ = (A1 + B = 1) (B C ≠ 0) = (B + A1 B1 = 1) (C B ≠ 0)  (C ≠ 0). 12’ · 121’ = (A1 + B = 1) (B C1 ≠ 0) = (B + A1 B1 = 1) (C1 B ≠ 0)  (C1 ≠ 0). 12’ · 131’ = (A1 + B = 1) (B1 C ≠ 0) = (B + A1 B1 = 1) (C B1 ≠ 0)   (C A1 ≠ 0) = b1A, C, in C, A angesetzt: Baroco. 12’ · 141’ = (A1 + B = 1) (B1 C1 ≠ 0) = (B + A1 B1 = 1) (C1 B1 ≠ 0)   (C1 A1 ≠ 0) = l1A, C. 13’ · 13’ = (A + B1 = 1) (B + C1 = 1) = (A B + C1 B1 = 1)  (A + C1 = 1) = bA, C, in C, A: Barbara. 13’ · 14’ = (A + B1 = 1) (B + C = 1) = (A B + C B1 = 1)  (A + C = 1) = lA, C. 13’ · 111’ = (A + B1 = 1) (B C ≠ 0) = (A B + B1 = 1) (C B ≠ 0)   (C A ≠ 0) = a1A, C, Disamis, Dimatis, desgleichen in C, A: Darii und Datisi.

Suche im Werk

Hilfe

Informationen zum Werk

Download dieses Werks

XML (TEI P5) · HTML · Text
TCF (text annotation layer)
XML (TEI P5 inkl. att.linguistic)

Metadaten zum Werk

TEI-Header · CMDI · Dublin Core

Ansichten dieser Seite

Voyant Tools ?

Language Resource Switchboard?

Feedback

Sie haben einen Fehler gefunden? Dann können Sie diesen über unsere Qualitätssicherungsplattform DTAQ melden.

Kommentar zur DTA-Ausgabe

Dieses Werk wurde gemäß den DTA-Transkriptionsrichtlinien im Double-Keying-Verfahren von Nicht-Muttersprachlern erfasst und in XML/TEI P5 nach DTA-Basisformat kodiert.




Ansicht auf Standard zurückstellen

URL zu diesem Werk: https://www.deutschestextarchiv.de/schroeder_logik0201_1891
URL zu dieser Seite: https://www.deutschestextarchiv.de/schroeder_logik0201_1891/382
Zitationshilfe: Schröder, Ernst: Vorlesungen über die Algebra der Logik. Bd. 2, Abt. 1. Leipzig, 1891, S. 358. In: Deutsches Textarchiv <https://www.deutschestextarchiv.de/schroeder_logik0201_1891/382>, abgerufen am 25.11.2024.