Anmelden (DTAQ) DWDS     dlexDB     CLARIN-D

Schröder, Ernst: Vorlesungen über die Algebra der Logik. Bd. 3, Abt. 1. Leipzig, 1895.

Bild:
<< vorherige Seite
Inhalt von Bd. 3, I.


Erste Vorlesung.
Zur Einführung.
Seite
§ 1. Plan. Der Operationskreis der Algebra der binären Relative 1
§ 2. Die Denkbereiche der verschiednen Ordnungen und ihre Individuen 4
Zweite Vorlesung.
Die formalen Grundlagen, insbesondre zur Algebra der binären Relative.
§ 3. Die 29 zu 31 fundamentalen Festsetzungen. Summendarstellung der
Relative. Aussagenschemata 17
§ 4. Die Matrix eines Relativs und deren Augen. Beispiele. Geometrische
Repräsentation. Die dreifachen Evidenzen 42
§ 5. Haushalt mit Klammern 68
Dritte Vorlesung.
Die Sätze von allgemeinster Natur in der Algebra der binären Relative.
§ 6. Gesetze der Spezies, soweit nur allgemeine Relative in deren Ausdruck
eingehen. Dualismus und Konjugation 76
§ 7. Beweis jener Grundgesetze. Nebst einigen Hülfsschemata des Aus-
sagenkalkuls 101
Vierte Vorlesung.
Einfachste Sätze von speziellerem Charakter in der Algebra der binären
Relative. Modulknüpfungen.
§ 8. Noch einige weitre Grundformeln. Die reduziblen primären Modul-
knüpfungen. Der Abacus vervollständigt. Produktdarstellung der
Relative 117
§ 9. Die 12 irreduziblen primären Modulknüpfungen und die 64 Diagonal-
abwandlungen eines allgemeinen Relativs 130
§ 10. Erste 6 "ausgezeichnete" Relative 146
Fünfte Vorlesung.
Das Auflösungsproblem in der Algebra der binären Relative.
§ 11. Gesamtaussage der Data eines Problems und allgemeinste Aufgabe 150
§ 12. Allgemeine und rigorose Lösungen 161
§ 13. Fortsetzung. Iterationen. Grenzwerte und Konvergenz. Potenz 178
§ 14. Beispiele einfachster Art. 192
Sechste Vorlesung.
Die Parallelreihentransformationen und -Probleme.
§ 15. Die 256 Zeilenabwandlungen eines allgemeinen Relativs. Ebensoviele
Kolonnenabwandlungen. Einschlägige Sätze 201
§ 16. Die inversen Zeilen- oder Kolonnenprobleme 223

Inhalt von Bd. 3, I.


Erste Vorlesung.
Zur Einführung.
Seite
§ 1. Plan. Der Operationskreis der Algebra der binären Relative 1
§ 2. Die Denkbereiche der verschiednen Ordnungen und ihre Individuen 4
Zweite Vorlesung.
Die formalen Grundlagen, insbesondre zur Algebra der binären Relative.
§ 3. Die 29 zu 31 fundamentalen Festsetzungen. Summendarstellung der
Relative. Aussagenschemata 17
§ 4. Die Matrix eines Relativs und deren Augen. Beispiele. Geometrische
Repräsentation. Die dreifachen Evidenzen 42
§ 5. Haushalt mit Klammern 68
Dritte Vorlesung.
Die Sätze von allgemeinster Natur in der Algebra der binären Relative.
§ 6. Gesetze der Spezies, soweit nur allgemeine Relative in deren Ausdruck
eingehen. Dualismus und Konjugation 76
§ 7. Beweis jener Grundgesetze. Nebst einigen Hülfsschemata des Aus-
sagenkalkuls 101
Vierte Vorlesung.
Einfachste Sätze von speziellerem Charakter in der Algebra der binären
Relative. Modulknüpfungen.
§ 8. Noch einige weitre Grundformeln. Die reduziblen primären Modul-
knüpfungen. Der Abacus vervollständigt. Produktdarstellung der
Relative 117
§ 9. Die 12 irreduziblen primären Modulknüpfungen und die 64 Diagonal-
abwandlungen eines allgemeinen Relativs 130
§ 10. Erste 6 „ausgezeichnete“ Relative 146
Fünfte Vorlesung.
Das Auflösungsproblem in der Algebra der binären Relative.
§ 11. Gesamtaussage der Data eines Problems und allgemeinste Aufgabe 150
§ 12. Allgemeine und rigorose Lösungen 161
§ 13. Fortsetzung. Iterationen. Grenzwerte und Konvergenz. Potenz 178
§ 14. Beispiele einfachster Art. 192
Sechste Vorlesung.
Die Parallelreihentransformationen und -Probleme.
§ 15. Die 256 Zeilenabwandlungen eines allgemeinen Relativs. Ebensoviele
Kolonnenabwandlungen. Einschlägige Sätze 201
§ 16. Die inversen Zeilen- oder Kolonnenprobleme 223

<TEI>
  <text>
    <front>
      <pb facs="#f0011" n="[V]"/>
      <div type="contents">
        <head> <hi rendition="#c">Inhalt von Bd. 3, I.</hi> </head><lb/>
        <milestone rendition="#hr" unit="section"/>
        <list>
          <item> <hi rendition="#c"><hi rendition="#g">Erste Vorlesung</hi>.</hi> </item><lb/>
          <item>Zur Einführung.</item><lb/>
          <item> <hi rendition="#right">Seite</hi> </item><lb/>
          <item>§ 1. Plan. Der Operationskreis der Algebra der binären Relative <ref>1</ref></item><lb/>
          <item>§ 2. Die Denkbereiche der verschiednen Ordnungen und ihre Individuen <ref>4</ref></item><lb/>
          <item><hi rendition="#c"><hi rendition="#g">Zweite Vorlesung</hi>.</hi><lb/>
Die formalen Grundlagen, insbesondre zur Algebra der binären Relative.<lb/>
§ 3. Die 29 zu 31 fundamentalen Festsetzungen. Summendarstellung der<lb/>
Relative. Aussagenschemata <ref>17</ref></item><lb/>
          <item>§ 4. Die Matrix eines Relativs und deren Augen. Beispiele. Geometrische<lb/>
Repräsentation. Die dreifachen Evidenzen <ref>42</ref></item><lb/>
          <item>§ 5. Haushalt mit Klammern <ref>68</ref></item><lb/>
          <item><hi rendition="#c"><hi rendition="#g">Dritte Vorlesung</hi>.</hi><lb/>
Die Sätze von allgemeinster Natur in der Algebra der binären Relative.<lb/>
§ 6. Gesetze der Spezies, soweit nur allgemeine Relative in deren Ausdruck<lb/>
eingehen. Dualismus und Konjugation <ref>76</ref></item><lb/>
          <item>§ 7. Beweis jener Grundgesetze. Nebst einigen Hülfsschemata des Aus-<lb/>
sagenkalkuls <ref>101</ref></item><lb/>
          <item><hi rendition="#c"><hi rendition="#g">Vierte Vorlesung</hi>.</hi><lb/>
Einfachste Sätze von speziellerem Charakter in der Algebra der binären<lb/>
Relative. Modulknüpfungen.<lb/>
§ 8. Noch einige weitre Grundformeln. Die reduziblen primären Modul-<lb/>
knüpfungen. Der Abacus vervollständigt. Produktdarstellung der<lb/>
Relative <ref>117</ref></item><lb/>
          <item>§ 9. Die 12 irreduziblen primären Modulknüpfungen und die 64 Diagonal-<lb/>
abwandlungen eines allgemeinen Relativs <ref>130</ref></item><lb/>
          <item>§ 10. Erste 6 &#x201E;ausgezeichnete&#x201C; Relative <ref>146</ref></item><lb/>
          <item><hi rendition="#c"><hi rendition="#g">Fünfte Vorlesung</hi>.</hi><lb/>
Das Auflösungsproblem in der Algebra der binären Relative.<lb/>
§ 11. Gesamtaussage der Data eines Problems und allgemeinste Aufgabe <ref>150</ref></item><lb/>
          <item>§ 12. Allgemeine und rigorose Lösungen <ref>161</ref></item><lb/>
          <item>§ 13. Fortsetzung. Iterationen. Grenzwerte und Konvergenz. Potenz <ref>178</ref></item><lb/>
          <item>§ 14. Beispiele einfachster Art. <ref>192</ref></item><lb/>
          <item><hi rendition="#c"><hi rendition="#g">Sechste Vorlesung</hi>.</hi><lb/>
Die Parallelreihentransformationen und -Probleme.<lb/>
§ 15. Die 256 Zeilenabwandlungen eines allgemeinen Relativs. Ebensoviele<lb/>
Kolonnenabwandlungen. Einschlägige Sätze <ref>201</ref></item><lb/>
          <item>§ 16. Die inversen Zeilen- oder Kolonnenprobleme <ref>223</ref></item><lb/>
        </list>
      </div>
    </front>
  </text>
</TEI>
[[V]/0011] Inhalt von Bd. 3, I. Erste Vorlesung. Zur Einführung. Seite § 1. Plan. Der Operationskreis der Algebra der binären Relative 1 § 2. Die Denkbereiche der verschiednen Ordnungen und ihre Individuen 4 Zweite Vorlesung. Die formalen Grundlagen, insbesondre zur Algebra der binären Relative. § 3. Die 29 zu 31 fundamentalen Festsetzungen. Summendarstellung der Relative. Aussagenschemata 17 § 4. Die Matrix eines Relativs und deren Augen. Beispiele. Geometrische Repräsentation. Die dreifachen Evidenzen 42 § 5. Haushalt mit Klammern 68 Dritte Vorlesung. Die Sätze von allgemeinster Natur in der Algebra der binären Relative. § 6. Gesetze der Spezies, soweit nur allgemeine Relative in deren Ausdruck eingehen. Dualismus und Konjugation 76 § 7. Beweis jener Grundgesetze. Nebst einigen Hülfsschemata des Aus- sagenkalkuls 101 Vierte Vorlesung. Einfachste Sätze von speziellerem Charakter in der Algebra der binären Relative. Modulknüpfungen. § 8. Noch einige weitre Grundformeln. Die reduziblen primären Modul- knüpfungen. Der Abacus vervollständigt. Produktdarstellung der Relative 117 § 9. Die 12 irreduziblen primären Modulknüpfungen und die 64 Diagonal- abwandlungen eines allgemeinen Relativs 130 § 10. Erste 6 „ausgezeichnete“ Relative 146 Fünfte Vorlesung. Das Auflösungsproblem in der Algebra der binären Relative. § 11. Gesamtaussage der Data eines Problems und allgemeinste Aufgabe 150 § 12. Allgemeine und rigorose Lösungen 161 § 13. Fortsetzung. Iterationen. Grenzwerte und Konvergenz. Potenz 178 § 14. Beispiele einfachster Art. 192 Sechste Vorlesung. Die Parallelreihentransformationen und -Probleme. § 15. Die 256 Zeilenabwandlungen eines allgemeinen Relativs. Ebensoviele Kolonnenabwandlungen. Einschlägige Sätze 201 § 16. Die inversen Zeilen- oder Kolonnenprobleme 223

Suche im Werk

Hilfe

Informationen zum Werk

Download dieses Werks

XML (TEI P5) · HTML · Text
TCF (text annotation layer)
XML (TEI P5 inkl. att.linguistic)

Metadaten zum Werk

TEI-Header · CMDI · Dublin Core

Ansichten dieser Seite

Voyant Tools ?

Language Resource Switchboard?

Feedback

Sie haben einen Fehler gefunden? Dann können Sie diesen über unsere Qualitätssicherungsplattform DTAQ melden.

Kommentar zur DTA-Ausgabe

Dieses Werk wurde gemäß den DTA-Transkriptionsrichtlinien im Double-Keying-Verfahren von Nicht-Muttersprachlern erfasst und in XML/TEI P5 nach DTA-Basisformat kodiert.




Ansicht auf Standard zurückstellen

URL zu diesem Werk: https://www.deutschestextarchiv.de/schroeder_logik03_1895
URL zu dieser Seite: https://www.deutschestextarchiv.de/schroeder_logik03_1895/11
Zitationshilfe: Schröder, Ernst: Vorlesungen über die Algebra der Logik. Bd. 3, Abt. 1. Leipzig, 1895, S. [V]. In: Deutsches Textarchiv <https://www.deutschestextarchiv.de/schroeder_logik03_1895/11>, abgerufen am 21.11.2024.