Anmelden (DTAQ) DWDS     dlexDB     CLARIN-D

Wolff, Christian von: Der Anfangs-Gründe Aller Mathematischen Wiessenschaften. Bd. 4. Halle (Saale), 1710.

Bild:
<< vorherige Seite
Anfangs-Gruͤnde
x4 : a2 + bx2 : a + cx = ad
a2

oder x4 + abx2 + a2cx = a3d/ die vorgegebe-
ne Æquation. Demnach iſt PM = x. W.
Z. E.
II. Es ſey x4 - abx2 - a2cx = a3d.
1. Reſolviret die gegebene Æquation in
Geometriſche Oerter (§. 370) und er-
wehlet zur Conftruction den Ort an
der Parabel xx = ay und den Ort an
dem Circul ay-by-y2 = x2-cx-ad.
2. Machet im uͤbrigen alles/ wie vorhin/ ſo
iſt PN die wahre Wurtzel/ und PM die
falſche.
Beweiß.
Der Beweis iſt eben wie vorhin. Denn
ſetzet PN = x/ ſo iſt NR = x - ½ c/ DP = HR
= xx : aab/
folgends x4 : a - xx + ¼ aa -
bx
2 : aab + ½bb + xx -cx + ¼cc = ¼ aaab
+ ¼ bb + ¼cc + ad/
das iſt/
x4 : a2 - bx2 : a - cx = ad
a
2
oder x4 - abx2 - a2cx = a3d/ welches die vor-
gegebene Æquation iſt. Demnach iſt
PM = x oder die wahre Wurtzel. W. Z. E.
III. Eben auf ſolche Art verfahret ihr in al-
len uͤbrigen Faͤllen.
Die 1. Anmerckung.

372. Dieſe Methode gehet nicht allein ferner an/
wenn alle Glieder in einer Qvadrato-Qvadratiſchen
Æquation vorhanden; ſondern auch in hoͤheren Æ-

qua-

Suche im Werk

Hilfe

Informationen zum Werk

Download dieses Werks

XML (TEI P5) · HTML · Text
TCF (text annotation layer)
XML (TEI P5 inkl. att.linguistic)

Metadaten zum Werk

TEI-Header · CMDI · Dublin Core

Ansichten dieser Seite

Voyant Tools ?

Language Resource Switchboard?

Feedback

Sie haben einen Fehler gefunden? Dann können Sie diesen über unsere Qualitätssicherungsplattform DTAQ melden.

Kommentar zur DTA-Ausgabe

Dieses Werk wurde gemäß den DTA-Transkriptionsrichtlinien im Double-Keying-Verfahren von Nicht-Muttersprachlern erfasst und in XML/TEI P5 nach DTA-Basisformat kodiert.




Ansicht auf Standard zurückstellen

URL zu diesem Werk: https://www.deutschestextarchiv.de/wolff_anfangsgruende04_1710
URL zu dieser Seite: https://www.deutschestextarchiv.de/wolff_anfangsgruende04_1710/232
Zitationshilfe: Wolff, Christian von: Der Anfangs-Gründe Aller Mathematischen Wiessenschaften. Bd. 4. Halle (Saale), 1710. , S. 230. In: Deutsches Textarchiv <https://www.deutschestextarchiv.de/wolff_anfangsgruende04_1710/232>, abgerufen am 23.02.2025.