- p = -4c
4
1/4 p = c
4c2 - 2ab + a2 = q
a2 + 4c2 - q = 2ab
2a
1/2 a + 2c2 : a - q : 2a = bdas ist/ 1/2
a + p2 : 8a - q : 2a = b4c2 - 2ab + a2 = q
4c2 + a2 + q = 2ab
2a
1/2a + 2c2 : a + q : 2a = bdas ist/ 1/2
a + p2 : 8a + q : 2a = b4abc - 2a2 d = r
4abc - r = 2a2d
2bc : a - r : 2a2 = d
1/4p + p3 : 16a2 + pq : 4a - r : 2a2 d
4abc - 2a2d = - r
4abc + r = 2a2d
2a2
2bc : a + r : 2a2 = d
1/4p + p3 : 16a2 + pq : 4a + r : 2a2 = dAlso kommet abermal in allen Fällen/ da
- p ist/
- p = -4c
4
¼ p = c
4c2 - 2ab + a2 = q
a2 + 4c2 - q = 2ab
2a
½ a + 2c2 : a - q : 2a = bdas iſt/ ½
a + p2 : 8a - q : 2a = b4c2 - 2ab + a2 = q
4c2 + a2 + q = 2ab
2a
½a + 2c2 : a + q : 2a = bdas iſt/ ½
a + p2 : 8a + q : 2a = b4abc - 2a2 d = r
4abc - r = 2a2d
2bc : a - r : 2a2 = d
¼p + p3 : 16a2 + pq : 4a - r : 2a2 ≡ d
4abc - 2a2d = - r
4abc + r = 2a2d
2a2
2bc : a + r : 2a2 = d
¼p + p3 : 16a2 + pq : 4a + r : 2a2 = dAlſo kommet abermal in allen Faͤllen/ da
- p iſt/
<TEI>
<text>
<body>
<div n="1">
<div n="2">
<div n="3">
<div n="4">
<div n="5">
<p><pb facs="#f0237" n="235"/><fw place="top" type="header"><hi rendition="#b">der Algebra.</hi></fw><lb/><hi rendition="#et"><hi rendition="#aq"><hi rendition="#u">- <hi rendition="#i">p</hi> = -4<hi rendition="#i">c</hi></hi><lb/>
4<lb/>
¼ <hi rendition="#i">p = c</hi><lb/><hi rendition="#u">4<hi rendition="#i">c</hi><hi rendition="#sup">2</hi> - 2<hi rendition="#i">ab + a</hi><hi rendition="#sup">2</hi> = <hi rendition="#i">q<lb/>
a</hi><hi rendition="#sup">2</hi> + 4<hi rendition="#i">c</hi><hi rendition="#sup">2</hi> - <hi rendition="#i">q</hi> = 2<hi rendition="#i">ab</hi></hi><lb/>
2<hi rendition="#i">a</hi><lb/><hi rendition="#u">½ <hi rendition="#i">a</hi> + 2<hi rendition="#i">c</hi><hi rendition="#sup">2</hi> : <hi rendition="#i">a - q</hi> : 2<hi rendition="#i">a = b</hi></hi></hi></hi><lb/>
das iſt/ ½ <hi rendition="#aq"><hi rendition="#i">a + p</hi><hi rendition="#sup">2</hi> : 8<hi rendition="#i">a - q</hi> : 2<hi rendition="#i">a = b</hi></hi><lb/><hi rendition="#et"><hi rendition="#aq"><hi rendition="#u">4<hi rendition="#i">c</hi><hi rendition="#sup">2</hi> - 2<hi rendition="#i">ab + a</hi><hi rendition="#sup">2</hi> = <hi rendition="#i">q</hi><lb/>
4<hi rendition="#i">c</hi><hi rendition="#sup">2</hi> + <hi rendition="#i">a</hi><hi rendition="#sup">2</hi> + <hi rendition="#i">q</hi> = 2<hi rendition="#i">ab</hi></hi><lb/>
2<hi rendition="#i">a</hi><lb/><hi rendition="#u">½<hi rendition="#i">a</hi> + 2<hi rendition="#i">c</hi><hi rendition="#sup">2</hi> : <hi rendition="#i">a + q</hi> : 2<hi rendition="#i">a = b</hi></hi></hi></hi><lb/>
das iſt/ ½<hi rendition="#aq"><hi rendition="#i">a + p</hi><hi rendition="#sup">2</hi> : 8<hi rendition="#i">a + q</hi> : 2<hi rendition="#i">a = b</hi></hi><lb/><hi rendition="#et"><hi rendition="#aq"><hi rendition="#u">4<hi rendition="#i">abc</hi> - 2<hi rendition="#i">a</hi><hi rendition="#sup">2</hi> <hi rendition="#i">d = r</hi><lb/>
4<hi rendition="#i">abc - r</hi> = 2<hi rendition="#i">a</hi><hi rendition="#sup">2</hi><hi rendition="#i">d</hi><lb/>
2<hi rendition="#i">bc : a - r</hi> : 2<hi rendition="#i">a</hi><hi rendition="#sup">2</hi> = <hi rendition="#i">d</hi></hi><lb/>
¼<hi rendition="#i">p + p</hi><hi rendition="#sup">3</hi> : 16<hi rendition="#i">a</hi><hi rendition="#sup">2</hi> + <hi rendition="#i">pq</hi> : 4<hi rendition="#i">a - r</hi> : 2<hi rendition="#i">a</hi><hi rendition="#sup">2</hi> ≡ <hi rendition="#i">d</hi><lb/><hi rendition="#u">4<hi rendition="#i">abc</hi> - 2<hi rendition="#i">a</hi><hi rendition="#sup">2</hi><hi rendition="#i">d = - r</hi><lb/>
4<hi rendition="#i">abc + r</hi> = 2<hi rendition="#i">a</hi><hi rendition="#sup">2</hi><hi rendition="#i">d</hi></hi><lb/>
2<hi rendition="#i">a</hi><hi rendition="#sup">2</hi><lb/><hi rendition="#u">2<hi rendition="#i">bc : a + r</hi> : 2<hi rendition="#i">a</hi><hi rendition="#sup">2</hi> = <hi rendition="#i">d</hi></hi><lb/>
¼<hi rendition="#i">p + p</hi><hi rendition="#sup">3</hi> : 16<hi rendition="#i">a</hi><hi rendition="#sup">2</hi> + <hi rendition="#i">pq</hi> : 4<hi rendition="#i">a + r</hi> : 2<hi rendition="#i">a</hi><hi rendition="#sup">2</hi> = <hi rendition="#i">d</hi></hi></hi><lb/>
Alſo kommet abermal in allen Faͤllen/ da <hi rendition="#aq"><hi rendition="#i">- p</hi></hi><lb/>
<fw place="bottom" type="catch">iſt/</fw><lb/></p>
</div>
</div>
</div>
</div>
</div>
</body>
</text>
</TEI>
[235/0237]
der Algebra.
- p = -4c
4
¼ p = c
4c2 - 2ab + a2 = q
a2 + 4c2 - q = 2ab
2a
½ a + 2c2 : a - q : 2a = b
das iſt/ ½ a + p2 : 8a - q : 2a = b
4c2 - 2ab + a2 = q
4c2 + a2 + q = 2ab
2a
½a + 2c2 : a + q : 2a = b
das iſt/ ½a + p2 : 8a + q : 2a = b
4abc - 2a2 d = r
4abc - r = 2a2d
2bc : a - r : 2a2 = d
¼p + p3 : 16a2 + pq : 4a - r : 2a2 ≡ d
4abc - 2a2d = - r
4abc + r = 2a2d
2a2
2bc : a + r : 2a2 = d
¼p + p3 : 16a2 + pq : 4a + r : 2a2 = d
Alſo kommet abermal in allen Faͤllen/ da - p
iſt/