Wolff, Christian von: Der Anfangs-Gründe Aller Mathematischen Wiessenschaften. Bd. 4. Halle (Saale), 1710.der Algebra. sdt-tds = vzxdy + vzy dx-vxydv-xyzdv/folgends d (xy : vz) = (vzxdy + vzydx- xyzdv-xyvdz) : v2z2. Die 1. Anmerckung. 406. Wie wir die Regel in der Division gefunden/ Die 2. Anmerckung. 407. Nach den bisher gegebenen Regeln können y2) Q 5
der Algebra. ſdt-tdſ = vzxdy + vzy dx-vxydv-xyzdv/folgends d (xy : vz) = (vzxdy + vzydx- xyzdv-xyvdz) : v2z2. Die 1. Anmerckung. 406. Wie wir die Regel in der Diviſion gefunden/ Die 2. Anmerckung. 407. Nach den bisher gegebenen Regeln koͤnnen y2) Q 5
<TEI> <text> <body> <div n="1"> <div n="2"> <div n="3"> <div n="4"> <p><pb facs="#f0251" n="249"/><fw place="top" type="header"><hi rendition="#b">der Algebra.</hi></fw><lb/><hi rendition="#aq"><hi rendition="#i">ſdt-tdſ = vz</hi>x<hi rendition="#i">d</hi>y + <hi rendition="#i">vz</hi>y <hi rendition="#i">d</hi>x-<hi rendition="#i">v</hi>xy<hi rendition="#i">dv</hi>-xy<hi rendition="#i">zdv/</hi></hi><lb/> folgends <hi rendition="#aq"><hi rendition="#i">d</hi> (xy : <hi rendition="#i">vz</hi>) = (<hi rendition="#i">vz</hi>x<hi rendition="#i">d</hi>y + <hi rendition="#i">vz</hi>y<hi rendition="#i">d</hi>x-<lb/> xy<hi rendition="#i">zdv</hi>-xy<hi rendition="#i">vd</hi>z) : v<hi rendition="#sup">2</hi><hi rendition="#i">z</hi><hi rendition="#sup">2</hi>.</hi></p> </div><lb/> <div n="4"> <head> <hi rendition="#b">Die 1. Anmerckung.</hi> </head><lb/> <p>406. Wie wir die Regel in der Diviſion gefunden/<lb/> haͤttet ihr auch alle Regeln finden koͤnnen/ die in dem<lb/> 4. 5 und 6. Zuſatze der vorhergehenden Aufgabe (§.<lb/> 400. 1. 3) auf eine andere Art hergeleitet worden.<lb/> Denn ſetzet<lb/><hi rendition="#aq"><hi rendition="#et"><hi rendition="#i">m</hi></hi><lb/><hi rendition="#u">V x<hi rendition="#sup"><hi rendition="#i">n</hi></hi> = <hi rendition="#i">v</hi></hi></hi><lb/> ſo iſt <hi rendition="#aq"><hi rendition="#u">x<hi rendition="#sup"><hi rendition="#i">n</hi></hi> = <hi rendition="#i">v</hi><hi rendition="#sup"><hi rendition="#i">m</hi></hi><lb/><hi rendition="#i">n</hi>x<hi rendition="#sup"><hi rendition="#i">n</hi>-1</hi><hi rendition="#i">d</hi>x = <hi rendition="#i">mv</hi><hi rendition="#sup"><hi rendition="#i">m</hi>-1</hi><hi rendition="#i">dv</hi></hi> (§. 398).<lb/><hi rendition="#i">n</hi>x<hi rendition="#sup"><hi rendition="#i">n</hi>-1</hi> <hi rendition="#i">d</hi>x : <hi rendition="#i">mv</hi><hi rendition="#sup"><hi rendition="#i">m</hi>-1</hi> = <hi rendition="#i">dv</hi><lb/><hi rendition="#et"><hi rendition="#i">m</hi></hi></hi><lb/> Nun iſt <hi rendition="#aq"><hi rendition="#i">v</hi><hi rendition="#sup"><hi rendition="#i">m</hi></hi>-1 = <hi rendition="#i">v</hi><hi rendition="#sup"><hi rendition="#i">m</hi></hi> : <hi rendition="#i">v</hi> = x<hi rendition="#sup"><hi rendition="#i">n</hi></hi> : V x<hi rendition="#sup"><hi rendition="#i">n</hi></hi></hi>/ folgends<lb/><hi rendition="#aq"><hi rendition="#i">n</hi>x<hi rendition="#sup"><hi rendition="#i">n</hi>-1</hi><hi rendition="#i">d</hi>x<formula/>x<hi rendition="#sup"><hi rendition="#i">n</hi></hi> : <hi rendition="#i">m</hi>x<hi rendition="#sup"><hi rendition="#i">n</hi></hi> = (<hi rendition="#i">n : m</hi>) x<hi rendition="#sup">-1</hi> <hi rendition="#i">d</hi>x<formula/>x<hi rendition="#sup"><hi rendition="#i">n</hi></hi> =<lb/> (<hi rendition="#i">n:m</hi>) x<hi rendition="#sup">1</hi> x<hi rendition="#sup"><hi rendition="#i">n:m</hi></hi> <hi rendition="#i">d</hi>x = (<hi rendition="#i">n:m</hi>) x<hi rendition="#sup"><hi rendition="#i">n:m</hi>-1</hi> <hi rendition="#i">d</hi>x/</hi> wie<lb/> ihr es (§. 400) gefunden.</p> </div><lb/> <div n="4"> <head> <hi rendition="#b">Die 2. Anmerckung.</hi> </head><lb/> <p>407. Nach den bisher gegebenen Regeln koͤnnen<lb/> alle Groͤſſen/ ſie moͤgen ausſehen/ wie ſie wollen/ dif-<lb/> ferentiiret werden/ und und iſt die Rechnung/ wie ihr<lb/> ſehet/ einerley/ die Groͤſſen moͤgen rational oder irra-<lb/> tional ſeyn. So findet ihr Z. E. <hi rendition="#aq"><hi rendition="#i">dV</hi> (<hi rendition="#i">x</hi><hi rendition="#sup">2</hi> - <hi rendition="#i">y</hi><hi rendition="#sup">2</hi>) = <hi rendition="#i">d</hi><lb/> (<hi rendition="#i">x</hi><hi rendition="#sup">2</hi>-<hi rendition="#i">y</hi><hi rendition="#sup">2</hi>)1:2 = ½ (2<hi rendition="#i">xdx</hi> - 2<hi rendition="#i">ydy</hi>) : (<hi rendition="#i">x</hi><hi rendition="#sup">2</hi>-<hi rendition="#i">y</hi><hi rendition="#sup">2</hi>)1:2 =<lb/><hi rendition="#i">xdx-ydy,</hi> : V (<hi rendition="#i">x</hi><hi rendition="#sup">2</hi>-<hi rendition="#i">y</hi><hi rendition="#sup">2</hi>)</hi> §. 400/ und <hi rendition="#aq"><hi rendition="#i">d</hi> V (<hi rendition="#i">aa-</hi></hi><lb/> <fw place="bottom" type="sig">Q 5</fw><fw place="bottom" type="catch"><hi rendition="#aq">y</hi><hi rendition="#sup">2</hi>)</fw><lb/></p> </div> </div> </div> </div> </body> </text> </TEI> [249/0251]
der Algebra.
ſdt-tdſ = vzxdy + vzy dx-vxydv-xyzdv/
folgends d (xy : vz) = (vzxdy + vzydx-
xyzdv-xyvdz) : v2z2.
Die 1. Anmerckung.
406. Wie wir die Regel in der Diviſion gefunden/
haͤttet ihr auch alle Regeln finden koͤnnen/ die in dem
4. 5 und 6. Zuſatze der vorhergehenden Aufgabe (§.
400. 1. 3) auf eine andere Art hergeleitet worden.
Denn ſetzet
m
V xn = v
ſo iſt xn = vm
nxn-1dx = mvm-1dv (§. 398).
nxn-1 dx : mvm-1 = dv
m
Nun iſt vm-1 = vm : v = xn : V xn/ folgends
nxn-1 dx[FORMEL]xn : mxn = (n : m) x-1 dx[FORMEL]xn =
(n:m) x1 xn:m dx = (n:m) xn:m-1 dx/ wie
ihr es (§. 400) gefunden.
Die 2. Anmerckung.
407. Nach den bisher gegebenen Regeln koͤnnen
alle Groͤſſen/ ſie moͤgen ausſehen/ wie ſie wollen/ dif-
ferentiiret werden/ und und iſt die Rechnung/ wie ihr
ſehet/ einerley/ die Groͤſſen moͤgen rational oder irra-
tional ſeyn. So findet ihr Z. E. dV (x2 - y2) = d
(x2-y2)1:2 = ½ (2xdx - 2ydy) : (x2-y2)1:2 =
xdx-ydy, : V (x2-y2) §. 400/ und d V (aa-
y2)
Q 5
Suche im WerkInformationen zum Werk
Download dieses Werks
XML (TEI P5) ·
HTML ·
Text Metadaten zum WerkTEI-Header · CMDI · Dublin Core Ansichten dieser Seite
Voyant Tools
|
URL zu diesem Werk: | https://www.deutschestextarchiv.de/wolff_anfangsgruende04_1710 |
URL zu dieser Seite: | https://www.deutschestextarchiv.de/wolff_anfangsgruende04_1710/251 |
Zitationshilfe: | Wolff, Christian von: Der Anfangs-Gründe Aller Mathematischen Wiessenschaften. Bd. 4. Halle (Saale), 1710. , S. 249. In: Deutsches Textarchiv <https://www.deutschestextarchiv.de/wolff_anfangsgruende04_1710/251>, abgerufen am 18.02.2025. |