Wundt, Wilhelm: Handbuch der medicinischen Physik. Erlangen, 1867.Von dem Lichte. verschiedener Wellenlänge und Oscillationsdauer enthält, wie z. B.das Sonnenlicht, so lassen sich die Erscheinungen leicht ableiten, in- dem man sich die Erfolge, die wir bei der Beleuchtung mit den ver- schiedenen Brechbarkeitsstufen homogenen Lichtes erhalten haben, summirt denkt. In der Mitte s der interferirenden Strahlenbündel (Fig. 151), wo bei Anwendung aller Arten homogenen Lichtes Licht- verstärkung entstund, wird auch nunmehr ein intensiver Streif weissen Lichtes zu sehen sein. Da aber auf beiden Seiten von s die Intensität des rothen Lichtes langsamer abnahm als diejenige des gelben, grünen u. s. w., so dass für Roth erst bei einem von s entfernteren Punkte Dunkel eintrat, so wird etwa bei r' (zwischen s und r) ein gelbrother, bei r" ein violetter Farbenton auftreten, dieser wird jenseits r" zunächst durch blau in weiss übergehen, worauf wieder roth kommt, u. s. w. Es müssen so rechts und links von s neben einander Spektren, Interferenz- spektren, entworfen werden, welche jedoch bei weitem nicht die Reinheit des durch ein Prisma entworfenen Spektrums besitzen, indem immer noch beträchtliche Mischungen von Farben verschiedener Hellig- keit an den einzelnen Stellen stattfinden. Auch ist, da die Entfer- nungen der einzelnen Hyperbelarme für jede Farbe mit der Entfer- nung von der Axe a s zunehmen, die Aufeinanderfolge der Farben in den einzelnen Spektren nicht ganz dieselbe, und die Farben werden, je weiter man sich zur Seite entfernt, immer undeutlicher. Wenn man für jede Brechbarkeitsstufe die einzelnen Hyperbeln etwa mit ver- schiedener Farbe zeichnet, so lassen sich ohne Schwierigkeit diese Erscheinungen sämmtlich durch Construction ableiten; wir begnügen uns mit dieser Andeutung, da ein weiteres theoretisches und practi- sches Interesse an die Einzelnheiten sich nicht knüpft. 206 Farben dünner Plättchen. Pha- sendifferenz des durchtretenden und reflectirten Lichtes. Interferenzspektren können ausser auf die angegebene noch auf Es sei A B C D (Fig. 152) eine dünne Schicht einer von paral- Von dem Lichte. verschiedener Wellenlänge und Oscillationsdauer enthält, wie z. B.das Sonnenlicht, so lassen sich die Erscheinungen leicht ableiten, in- dem man sich die Erfolge, die wir bei der Beleuchtung mit den ver- schiedenen Brechbarkeitsstufen homogenen Lichtes erhalten haben, summirt denkt. In der Mitte s der interferirenden Strahlenbündel (Fig. 151), wo bei Anwendung aller Arten homogenen Lichtes Licht- verstärkung entstund, wird auch nunmehr ein intensiver Streif weissen Lichtes zu sehen sein. Da aber auf beiden Seiten von s die Intensität des rothen Lichtes langsamer abnahm als diejenige des gelben, grünen u. s. w., so dass für Roth erst bei einem von s entfernteren Punkte Dunkel eintrat, so wird etwa bei r' (zwischen s und r) ein gelbrother, bei r″ ein violetter Farbenton auftreten, dieser wird jenseits r″ zunächst durch blau in weiss übergehen, worauf wieder roth kommt, u. s. w. Es müssen so rechts und links von s neben einander Spektren, Interferenz- spektren, entworfen werden, welche jedoch bei weitem nicht die Reinheit des durch ein Prisma entworfenen Spektrums besitzen, indem immer noch beträchtliche Mischungen von Farben verschiedener Hellig- keit an den einzelnen Stellen stattfinden. Auch ist, da die Entfer- nungen der einzelnen Hyperbelarme für jede Farbe mit der Entfer- nung von der Axe a s zunehmen, die Aufeinanderfolge der Farben in den einzelnen Spektren nicht ganz dieselbe, und die Farben werden, je weiter man sich zur Seite entfernt, immer undeutlicher. Wenn man für jede Brechbarkeitsstufe die einzelnen Hyperbeln etwa mit ver- schiedener Farbe zeichnet, so lassen sich ohne Schwierigkeit diese Erscheinungen sämmtlich durch Construction ableiten; wir begnügen uns mit dieser Andeutung, da ein weiteres theoretisches und practi- sches Interesse an die Einzelnheiten sich nicht knüpft. 206 Farben dünner Plättchen. Pha- sendifferenz des durchtretenden und reflectirten Lichtes. Interferenzspektren können ausser auf die angegebene noch auf Es sei A B C D (Fig. 152) eine dünne Schicht einer von paral- <TEI> <text> <body> <div n="1"> <div n="2"> <div n="3"> <p><pb facs="#f0332" n="310"/><fw place="top" type="header">Von dem Lichte.</fw><lb/> verschiedener Wellenlänge und Oscillationsdauer enthält, wie z. B.<lb/> das Sonnenlicht, so lassen sich die Erscheinungen leicht ableiten, in-<lb/> dem man sich die Erfolge, die wir bei der Beleuchtung mit den ver-<lb/> schiedenen Brechbarkeitsstufen homogenen Lichtes erhalten haben,<lb/> summirt denkt. In der Mitte s der interferirenden Strahlenbündel<lb/> (Fig. 151), wo bei Anwendung aller Arten homogenen Lichtes Licht-<lb/> verstärkung entstund, wird auch nunmehr ein intensiver Streif weissen<lb/> Lichtes zu sehen sein. Da aber auf beiden Seiten von s die Intensität<lb/> des rothen Lichtes langsamer abnahm als diejenige des gelben, grünen<lb/> u. s. w., so dass für Roth erst bei einem von s entfernteren Punkte Dunkel<lb/> eintrat, so wird etwa bei r' (zwischen s und r) ein gelbrother, bei r″ ein<lb/> violetter Farbenton auftreten, dieser wird jenseits r″ zunächst durch blau<lb/> in weiss übergehen, worauf wieder roth kommt, u. s. w. Es müssen<lb/> so rechts und links von s neben einander Spektren, <hi rendition="#g">Interferenz-<lb/> spektren</hi>, entworfen werden, welche jedoch bei weitem nicht die<lb/> Reinheit des durch ein Prisma entworfenen Spektrums besitzen, indem<lb/> immer noch beträchtliche Mischungen von Farben verschiedener Hellig-<lb/> keit an den einzelnen Stellen stattfinden. Auch ist, da die Entfer-<lb/> nungen der einzelnen Hyperbelarme für jede Farbe mit der Entfer-<lb/> nung von der Axe a s zunehmen, die Aufeinanderfolge der Farben in<lb/> den einzelnen Spektren nicht ganz dieselbe, und die Farben werden,<lb/> je weiter man sich zur Seite entfernt, immer undeutlicher. Wenn man<lb/> für jede Brechbarkeitsstufe die einzelnen Hyperbeln etwa mit ver-<lb/> schiedener Farbe zeichnet, so lassen sich ohne Schwierigkeit diese<lb/> Erscheinungen sämmtlich durch Construction ableiten; wir begnügen<lb/> uns mit dieser Andeutung, da ein weiteres theoretisches und practi-<lb/> sches Interesse an die Einzelnheiten sich nicht knüpft.</p><lb/> <note place="left">206<lb/> Farben dünner<lb/> Plättchen. Pha-<lb/> sendifferenz des<lb/> durchtretenden<lb/> und reflectirten<lb/> Lichtes.</note> <p>Interferenzspektren können ausser auf die angegebene noch auf<lb/> manchfache andere Weise entstehen; am häufigsten beobachtet man<lb/> dieselben an dünnen Schichten farbloser durchsichtiger Körper. Sie<lb/> sind unter dem Namen der <hi rendition="#g">Farben dünner Plättchen</hi> bekannt.<lb/> Es gehören hierher namentlich die Farben der Seifenblasen, dünner<lb/> Glimmer- oder Glasplättchen, der Flügeldecken gewisser Insecten, der<lb/> Fischschuppen u. s. w.</p><lb/> <p>Es sei A B C D (Fig. 152) eine dünne Schicht einer von paral-<lb/> lelen Wänden begrenzten durchsichtigen Substanz, die auf beiden<lb/> Seiten vom selben Medium umgeben ist, also z. B. ein Glasplättchen<lb/> von Luft umgeben. Ein Strahl a b, der bei b auf die Fläche A B<lb/> fällt, erfährt hier eine Theilung, indem er theils nach b c reflectirt,<lb/> theils nach b d gebrochen wird. Bei d erfährt der Strahl b d noch<lb/> einmal eine Theilung, indem er an der Fläche B C theils nach d b'<lb/> reflectirt, theils nach d e gebrochen wird. Der Strahl d b' spaltet<lb/> sich dann bei b' zum dritten Mal, ein Theil wird nach b' d' reflectirt,<lb/></p> </div> </div> </div> </body> </text> </TEI> [310/0332]
Von dem Lichte.
verschiedener Wellenlänge und Oscillationsdauer enthält, wie z. B.
das Sonnenlicht, so lassen sich die Erscheinungen leicht ableiten, in-
dem man sich die Erfolge, die wir bei der Beleuchtung mit den ver-
schiedenen Brechbarkeitsstufen homogenen Lichtes erhalten haben,
summirt denkt. In der Mitte s der interferirenden Strahlenbündel
(Fig. 151), wo bei Anwendung aller Arten homogenen Lichtes Licht-
verstärkung entstund, wird auch nunmehr ein intensiver Streif weissen
Lichtes zu sehen sein. Da aber auf beiden Seiten von s die Intensität
des rothen Lichtes langsamer abnahm als diejenige des gelben, grünen
u. s. w., so dass für Roth erst bei einem von s entfernteren Punkte Dunkel
eintrat, so wird etwa bei r' (zwischen s und r) ein gelbrother, bei r″ ein
violetter Farbenton auftreten, dieser wird jenseits r″ zunächst durch blau
in weiss übergehen, worauf wieder roth kommt, u. s. w. Es müssen
so rechts und links von s neben einander Spektren, Interferenz-
spektren, entworfen werden, welche jedoch bei weitem nicht die
Reinheit des durch ein Prisma entworfenen Spektrums besitzen, indem
immer noch beträchtliche Mischungen von Farben verschiedener Hellig-
keit an den einzelnen Stellen stattfinden. Auch ist, da die Entfer-
nungen der einzelnen Hyperbelarme für jede Farbe mit der Entfer-
nung von der Axe a s zunehmen, die Aufeinanderfolge der Farben in
den einzelnen Spektren nicht ganz dieselbe, und die Farben werden,
je weiter man sich zur Seite entfernt, immer undeutlicher. Wenn man
für jede Brechbarkeitsstufe die einzelnen Hyperbeln etwa mit ver-
schiedener Farbe zeichnet, so lassen sich ohne Schwierigkeit diese
Erscheinungen sämmtlich durch Construction ableiten; wir begnügen
uns mit dieser Andeutung, da ein weiteres theoretisches und practi-
sches Interesse an die Einzelnheiten sich nicht knüpft.
Interferenzspektren können ausser auf die angegebene noch auf
manchfache andere Weise entstehen; am häufigsten beobachtet man
dieselben an dünnen Schichten farbloser durchsichtiger Körper. Sie
sind unter dem Namen der Farben dünner Plättchen bekannt.
Es gehören hierher namentlich die Farben der Seifenblasen, dünner
Glimmer- oder Glasplättchen, der Flügeldecken gewisser Insecten, der
Fischschuppen u. s. w.
Es sei A B C D (Fig. 152) eine dünne Schicht einer von paral-
lelen Wänden begrenzten durchsichtigen Substanz, die auf beiden
Seiten vom selben Medium umgeben ist, also z. B. ein Glasplättchen
von Luft umgeben. Ein Strahl a b, der bei b auf die Fläche A B
fällt, erfährt hier eine Theilung, indem er theils nach b c reflectirt,
theils nach b d gebrochen wird. Bei d erfährt der Strahl b d noch
einmal eine Theilung, indem er an der Fläche B C theils nach d b'
reflectirt, theils nach d e gebrochen wird. Der Strahl d b' spaltet
sich dann bei b' zum dritten Mal, ein Theil wird nach b' d' reflectirt,
Suche im WerkInformationen zum Werk
Download dieses Werks
XML (TEI P5) ·
HTML ·
Text Metadaten zum WerkTEI-Header · CMDI · Dublin Core Ansichten dieser Seite
Voyant Tools ?Language Resource Switchboard?FeedbackSie haben einen Fehler gefunden? Dann können Sie diesen über unsere Qualitätssicherungsplattform DTAQ melden. Kommentar zur DTA-AusgabeDieses Werk wurde gemäß den DTA-Transkriptionsrichtlinien im Double-Keying-Verfahren von Nicht-Muttersprachlern erfasst und in XML/TEI P5 nach DTA-Basisformat kodiert.
|
Insbesondere im Hinblick auf die §§ 86a StGB und 130 StGB wird festgestellt, dass die auf diesen Seiten abgebildeten Inhalte weder in irgendeiner Form propagandistischen Zwecken dienen, oder Werbung für verbotene Organisationen oder Vereinigungen darstellen, oder nationalsozialistische Verbrechen leugnen oder verharmlosen, noch zum Zwecke der Herabwürdigung der Menschenwürde gezeigt werden. Die auf diesen Seiten abgebildeten Inhalte (in Wort und Bild) dienen im Sinne des § 86 StGB Abs. 3 ausschließlich historischen, sozial- oder kulturwissenschaftlichen Forschungszwecken. Ihre Veröffentlichung erfolgt in der Absicht, Wissen zur Anregung der intellektuellen Selbstständigkeit und Verantwortungsbereitschaft des Staatsbürgers zu vermitteln und damit der Förderung seiner Mündigkeit zu dienen.
2007–2024 Deutsches Textarchiv, Berlin-Brandenburgische Akademie der Wissenschaften.
Kontakt: redaktion(at)deutschestextarchiv.de. |